• Title/Summary/Keyword: 16 QAM

Search Result 304, Processing Time 0.021 seconds

Performance Analysis of Convolution coded 16 QAM Signal with Maximum Ratio Combining Diversity in Rician Fading and Impulsive Noise Environments (라이시안 페이딩과 임펄스 잡음이 존재하는 환경에서 최대비 합성 다이버시티 기법과 길쌈 부호화 기법을 채용한 16 QAM 신호의 성능해석)

  • Kim, Kwang-Rak;Lee, Ho-Young;Kim, Eon-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.663-668
    • /
    • 2008
  • In this paper, we analyzed the error rate Performance of convolution coded 16 QAM signal in impulsive noise Environments. We used convolution rode and maximum ratio combining diversity for performance improvement. We analyzed the error rate performance of 16 QAM signal in implusive noise environments compared with gaussian noise environments. As a result of analysis, there is a BER segment where the efficiency of system does not improve until which limit to raise a signal power potential from impulsive noise environment when the signal power potential which goes over this limit is supplied, BER efficiency improve much more.

  • PDF

Block Error Performance of Orthogonal Multicarrier 16 QAM Signal in a Frequency Selective Rician Fading Environment (주파수 선택성 라이시안 페이딩 환경에서 직교 다중반송파 16 QAM 신호의 블록 오류율 성능)

  • Kim Young-Chul;Kang Duk-Keun
    • Journal of Digital Contents Society
    • /
    • v.5 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • In this paper, we have analyzed the block error probability of orthogonal multicarrier 16 QAM signal in a frequency selective Rician fading environment. The block error probability is evaluated with several parameters such as normalized propagation delay $(\gamma/T_S),$, bit energy to noise power ratio $(E_b/N_0),$ and desired signal to undesired signal power ratio (DUR) in fast fading and slow fading channels. In the fast fading channel, The result shows that the block error probability rather in the fast fading channel achieves better performance than in the slow fading channel, when the error correction capability is one or two.

  • PDF

Performance Improvement of 16-QAM for Employing Miller Coding Technique in Rayleigh Fading Environment (레일레이 페이딩 환경하에서 밀러부호화 기법에 의한 16-QAM 통신방식의 성능개선)

  • 김태헌;하덕호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.289-295
    • /
    • 1998
  • The purpose of this paper is to propose an improvement method of BER for coded 16-QAM under Rayleigh fading channel. To overcome the BER degradation due to the fading under mobile communication, we apply delay modulation technique which is efficient to get both a coding gain and approximately one-half those needed by Manchester coding on bandwidth requirements. Especially, the delay modulation scheme is insensitive to the $180^{\circ}$phase ambiquity common to NRZ-L and Manchester coding schemes. From the computer simulation, BER performance of our scheme has achieved about 3.8 dB improvement of about $10^{-4}$, compared to Manchester coded 16-QAM.

  • PDF

The Performance Simulation of OFDM System Employing Hierarchical 16QAM for Image and Data Transmission in Multipath Fading Channel

  • Kwak, Jae-Min;Ahn, Jun-Bae;Park, Ki-Sik;Cho, Sung-Eon;Cho, Sung-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.12-15
    • /
    • 2000
  • In this paper, we have evaluated the performance of an OFDM system using hierarchical 16QAM (OFDM/HL-16QAM) for achieving high quality and high speed data and image transmission in multipath fading channel. The wireless channel for performance evaluation is assumed to include AWGN and two ray multipath fading. Through simulation we have obtained the BER performance of the system according to $E_{b}$, $N_{0}$, then compared the received image quality of proposed system with that of conventional system. From the result, it is shown that the OFDM/HL-16QAM system is more effective for data and image transmission.n.n.

  • PDF

Performance Analysis of Convolution coded 16 QAM Signal with Selective Combining Diversity in Rician Fading and Impulsive Noise Environments (라이시안 페이딩과 임펄스 잡음이 존재하는 환경에서 선택 합성 다이버시티 기법과 길쌈 부호화 기법을 채용한 16 QAM 신호의 성능해석)

  • Kim, Kwang-Rak;Lee, Ho-Young;Kim, Eon-Gon
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1303-1311
    • /
    • 2008
  • In this paper, we analyzed the error rate performance of convolution coded 16 QAM signal in impulsive noise Environments. We used convolution code and selective combining diversity for performance improvement. We analyzed the error rate performance of 16 QAM signal in impulsive noise environments compared with gaussian noise environments. As a result of analysis, there is a BER segment where the efficiency of system does not improve until which limit to raise a signal power potential from impulsive noise environment. when the signal power potential which goes over this limit is supplied, BER efficiency improve much more.

  • PDF

BER performance of MIMO 16QAM with transmit and receive polarization diversify technique on mobile communication channel (이동통신 채널에서 송수신 편파 디버시티 기법을 채용한 MIMO 16QAM의 BER 성능분석)

  • Kim, Tae-Heon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.135-141
    • /
    • 2008
  • The utilization techniques for multiple transmit and receive antennas or high capacity modulation schemes are essential to cope with the rapidly increasing demand for realizing more diverse wireless communication services with high rates. However, employing multiple receive antennas at the mobile units seems less practical due at the size and power limitations. Therefore, transmit diversify techniques have been extensively investigated for the downlink transmission to improve the performance In order to overcome the above mentioned problems, we construct a simulation model which combines STC and polarization diversity which scheme is requiring less cost to realize. Multi-level quadrature amplitude modulation (MQAM) is an attractive modulation scheme for wireless communication due to the high spectral efficiency it provides. Thus, the performance for our scheme is presented when 16QAM modulation techniques are applied. and compared with the former schemes.

  • PDF

16-QAM Periodic Complementary Sequence Mates Based on Interleaving Technique and Quadriphase Periodic Complementary Sequence Mates

  • Zeng, Fanxin;Zeng, Xiaoping;Xiao, Lingna;Zhang, Zhenyu;Xuan, Guixin
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.581-588
    • /
    • 2013
  • Based on an interleaving technique and quadriphase periodic complementary sequence (CS) mates, this paper presents a method for constructing a family of 16-quadrature amplitude modulation (QAM) periodic CS mates. The resulting mates arise from the conversion of quadriphase periodic CS mates, and the period of the former is twice as long as that of the latter. In addition, based on the existing binary periodic CS mates, a table on the existence of the proposed 16-QAM periodic CS mates is given. Furthermore, the proposed method can also transform a mutually orthogonal (MO) quadriphase CS set into an MO 16-QAM CS set. Finally, three examples are given to demonstrate the validity of the proposed method.

Design of a High Speed QPSK/16-QAM Receiver Chip (고속 QPSK/16-QAM 수신기 칩 설계)

  • Park, Ki-Hyuk;Sunwoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4B
    • /
    • pp.237-244
    • /
    • 2003
  • This paper presents the design of a QPSK/16-QAM downstreams receiver chip. The proposed chip consists of a blind equalizer, a timing recovery block and a carrier recovery block. The blind equalizer uses a DFE sturucture using CMA(Constant Module Algorithm). The symbol timing recovery uses the modified parabolic interpolator. The decision-directed carrier recovery is used to remove the carrier frequency offset, phase offset and phase jitter. The implemented LMDS receiver can support four data rates, 10, 20, 30 and 40 Mbps and can accommodate the symbol rate up to 10 Mbaud. This symbol rate is faster than existing QAM receivers.