• Title/Summary/Keyword: 12S rDNA

Search Result 398, Processing Time 0.029 seconds

Impact of a Glyphosate-Tolerant Soybean Line on the Rhizobacteria, Revealed by Illumina MiSeq

  • Lu, Gui-Hua;Zhu, Yin-Ling;Kong, Ling-Ru;Cheng, Jing;Tang, Cheng-Yi;Hua, Xiao-Mei;Meng, Fan-Fan;Pang, Yan-Jun;Yang, Rong-Wu;Qi, Jin-Liang;Yang, Yong-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.561-572
    • /
    • 2017
  • The global commercial cultivation of transgenic crops, including glyphosate-tolerant soybean, has increased widely in recent decades with potential impact on the environment. The bulk of previous studies showed different results on the effects of the release of transgenic plants on the soil microbial community, especially rhizosphere bacteria. In this study, comparative analyses of the bacterial communities in the rhizosphere soils and surrounding soils were performed between the glyphosate-tolerant soybean line NZL06-698 (or simply N698), containing a glyphosate-insensitive EPSPS gene, and its control cultivar Mengdou12 (or simply MD12), by a 16S ribosomal RNA gene (16S rDNA) amplicon sequencing-based Illumina MiSeq platform. No statistically significant difference was found in the overall alpha diversity of the rhizosphere bacterial communities, although the species richness and evenness of the bacteria increased in the rhizosphere of N698 compared with that of MD12. Some influence on phylogenetic diversity of the rhizosphere bacterial communities was found between N698 and MD12 by beta diversity analysis based on weighted UniFrac distance. Furthermore, the relative abundances of part rhizosphere bacterial phyla and genera, which included some nitrogen-fixing bacteria, were significantly different between N698 and MD12. Our present results indicate some impact of the glyphosate-tolerant soybean line N698 on the phylogenetic diversity of rhizosphere bacterial communities together with a significant difference in the relative abundances of part rhizosphere bacteria at different classification levels as compared with its control cultivar MD12, when a comparative analysis of surrounding soils between N698 and MD12 was used as a systematic contrast study.

Colchicine-Induced Polyploidy and It's Agronomic Characters in Bupleurum falcatum (배수체 작성에 따른 시호 작물 특성)

  • Son, Tae-Kwon;Lee, Sang-Chul;Chung, Il-Kyung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.1
    • /
    • pp.39-43
    • /
    • 2008
  • The effect of colchicine treatment on the agronomic performance and polyploid formation of Bupleurum falcatum using flow cytometry technique was investigated. The roots of 4-leaf stage plants were treated with colchicine (0.5%) for 3, 6, 12, and 24 hours and then transplanted in the field. Agronomic characters (survival rate, plant height, chlorophyll content, bolting rate) were recorded at 4 weeks and 6 months after transplanting while flow cytometry technique was conducted for determination of polyploid formation. Flow cytometry technique revealed polyploid nuclear DNA formation in colchicine treated plants. The highest number of polyploids was obtained at the shortest colchicine treatment time indicating an inverse relationship between colchicine treatment time and polyploid formation. Results also showed that survival and bolting rates were inversely related with the treatment time while plant height and chlorophyll were not significantly affected by the treatment. This study showed a convenient method for determination of colchicine-induced polyploid in B. falcatum and its superior agronomic performance at shorter treatment time.

Heterotrophic Bacterial Growth on Hoses in a Neonatal Water Distribution System

  • Buffet-Bataillon, Sylvie;Bonnaure-Mallet, Martine;De La Pintiere, Armelle;Defawe, Guy;Gautier-Lerestif, Anne Lise;Fauveau, Severine;Minet, Jacques
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.779-781
    • /
    • 2010
  • After preliminary tests indicated an increased number of heterotrophic bacteria, we investigated possible sources of contamination in a neonatal intensive care unit (NICU) water distribution system. Scanning electron microscopic examination of flexible metallic hoses associated with the system revealed the presence of a biofilm; partial 16S rDNA sequencing revealed that the biofilm contained Blastomonas natatoria. Purgation of the water system three times a day, reinforced faucet cleaning, decreasing the cold water temperature to $12^{\circ}C$, and six repeated chlorinations at concentrations as high as 2 mg/l were not sufficient to eradicate the bacterial contamination. Replacing all of the rubber-interior flexible metallic hoses with teflon-lined hoses, followed by heating the water to $70^{\circ}C$, successfully controlled the bacteria.

Biodegradation of Phenanthrene by Psychrotrophic Bacteria from Lake Baikal

  • AHN TAE-SEOK;LEE GEON-HYOUNG;SONG HONG-GYU
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1135-1139
    • /
    • 2005
  • Psychrotrophic phenanthrene-degrading bacteria were identified in the sediment samples collected from Lake Baikal, Russia. Among 70 phenanthrene-degrading isolates, the seven that had the highest phenanthrene-degradation rates were identified by 16S rDNA sequencing. Isolate P25, identified as the Gram-positive rod-shaped organism Rhodococcus erythropolis, had the highest growth and degradation rate at $15^{\circ}C$. It could remove $26.0\%$ of 100 mg $1^{-1}$ phenanthrene in 20 days at $15^{\circ}C$, and degradation was less at $5^{\circ}C\;and\;25^{\circ}C$. The addition of surfactants to enhance degradation was tested. Brij 30 and Triton X-100 inhibited degradation at all surfactant concentrations tested, but Tween 80 stimulated phenanthrene degradation, especially at low concentrations. When $20{\times}$ CMC (critical micelle concentration) of Tween 80 was added, $38.0\%$ of 100 mg $1^{-1}$ phenanthrene was degraded in 12 days at $15^{\circ}C$. This psychrotrophic phenanthrene-degrading bacterium is a candidate for use in bioremediation of polycyclic hydrocarbon contamination in low temperature environments.

Arthonia dokdoensis and Rufoplaca toktoana - Two New Taxa from Dokdo Islands (South Korea)

  • Kondratyuk, Sergij;Lokos, Laszlo;Halda, Josef;Lee, Beeyoung Gun;Jang, Seol-Hwa;Woo, Jeong-Jae;Park, Jung Shin;Oh, Soon-Ok;Han, Sang-Kuk;Hur, Jae-Seoun
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.355-367
    • /
    • 2019
  • Arthonia dokdoensis sp. nov., a lichenicolous fungus from the subcosmopolitan Arthonia molendoi complex growing on crustose thalli of species of the genus Orientophila (subfamily Xanthorioideae, Teloschistaceae), as well as the lichen species Rufoplaca toktoana sp. nov. (subfamily Caloplacoideae, Teloschistaceae) similar to Rufoplaca kaernefeltiana, both from Dokdo Islands, Republic of Korea, are described, illustrated, and compared with closely related taxa. In the phylogenetic tree of the Arthoniaceae based on 12S mtSSU and RPB2 gene sequences, the phylogenetic position of the A. dokdoensis and the relationship with the A. molendoi group are illustrated, while the position of the newly described R. toktoana is confirmed by phylogenetic tree based on ITS nrDNA data.

A Molecular Marker Specific to Metarhizium anisopliae var. majus

  • YOON, CHEOL-SIK;GI HO SUNG;JAE MO SUNG;JAEANG OON LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.334-339
    • /
    • 1999
  • More innovative molecular markers were investigated for rapid and consistent differentiation of Metarhizium anisopliae var. majus from M. anisopliae var. anisopliae. A total of 28 isolates were obtained from various countries and hosts: 13 isolates of M. anisopliae var. anisopliae, 12 isolates of M. anisopliae var. majus, and 3 isolates of M. anisopliae collected in Korea. This study involved restriction enzyme digestions of a PCR product amplified from nuclear internally transcribed spacer (ITS) and a portion of the 28S rDNA regions. Among 11 different restriction enzymes used in this study, MboⅠ digestion particularly produced a restriction pattern that had characteristics of M. anisopliae var. majus. This restriction pattern was consistent in all isolates of M. anisopliae var. majus regardless of their geographic origins and insect hosts. Mapping experiments revealed that MboⅠ sites of M. anisopliae var. majus are identical to those of M. anisopliae var. anisopliae with an exception for the presence of an additional site in the PCR product. Results from this study provide an additional method for identification and differentiation of isolates of these two varieties of M. anisopliae for use in the field and laboratory experiments.

  • PDF

Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea

  • Lee, Dong Hwan;Kim, Jin-Beom;Lim, Jeong-A;Han, Sang-Wook;Heu, Sunggi
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed.

Occurrence of Squash yellow mild mottle virus and Pepper golden mosaic virus in Potential New Hosts in Costa Rica

  • Castro, Ruth M.;Moreira, Lisela;Rojas, Maria R.;Gilbertson, Robert L.;Hernandez, Eduardo;Mora, Floribeth;Ramirez, Pilar
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.285-293
    • /
    • 2013
  • Leaf samples of Solanum lycopersicum, Capsicum annuum, Cucurbita moschata, Cucurbita pepo, Sechium edule and Erythrina spp. were collected. All samples were positive for begomoviruses using polymerase chain reaction and degenerate primers. A sequence of ~1,100 bp was obtained from the genomic component DNA-A of 14 samples. In addition, one sequence of ~580 bp corresponding to the coat protein (AV1) was obtained from a chayote (S. edule) leaf sample. The presence of Squash yellow mild mottle virus (SYMMoV) and Pepper golden mosaic virus (PepGMV) were confirmed. The host range reported for SYMMoV includes species of the Cucurbitaceae, Caricaceae and Fabaceae families. This report extends the host range of SYMMoV to include the Solanaceae family, and extends the host range of PepGMV to include C. moschata, C. pepo and the Fabaceae Erythrina spp. This is the first report of a begomovirus (PepGMV) infecting chayote in the Western Hemisphere.

Characterization of a Nitrogen Fixing Bacteria Mycobacterium hominis sp. AKC-10 Isolated from the Wetland (습지에서 분리한 질소고정 세균인 Mycobacterium hominis sp. AKC-10의 특성)

  • Hong, Sun-Hwa;Shin, Ki-Chul;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.302-307
    • /
    • 2010
  • Nitrogen is an element need to grow plants growth. Plants take up nitrogen in the form of nitrate or ammonium. Most of plants absorb nitrogen source as fertilizers. But from 50 to 70% of fertilizers applied were washed away. This study was conducted to isolate free-living nitrogen fixing bacteria from reed and to examine its beneficial traits for developing sustainable biofertilizers. Enriched consortium obtained from a reed in Ansan was developed for the fixing of nitrogen. Nitrogen fixing bacteria isolated from an enriched culture in Congo Red Medium was analyzed by 16s rDNA sequencing. AKC-10 was isolated and shown to have excellent nitrogen fixing ability. The optimum conditions of nitrogen fixing ability were $25^{\circ}C$ ($237.50{\pm}39.65\;nmole{\cdot}mg-protein^{-1}{\cdot}h^{-1}$ and pH 7 ($168.335{\pm}12.84$ nmole/hr mg-protein). It was identified as Microbacterium hominis [(AKC-10 (similarity : 99%)]. This strain was had to IAA (indole-3-acetic acid) productivity and ACC(1-aminocyclopropane-1-carboxylic acid) deaminase activity. Therefore, Microbacterium hominis AKC-10 stimulated plant development in the soil, enhancing the efficiency of remediation.

Identification of Streptomyces sp. KH29, Which Produces an Antibiotic Substance Processing an Inhibitory Activity Against Multidrug-Resistant Acinetobacter baumannii

  • Lee, Keyong-Ho;Kim, Gye-Woong;Rhee, Ki-Hyeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1672-1676
    • /
    • 2010
  • The Actinomycete strain KH29 is antagonistic to the multidrug-resistant Acinetobacter baumannii. Based on the diaminopimelic acid (DAP) type, and the morphological and physiological characteristics observed through the use of scanning electron microscopy (SEM), KH29 was confirmed as belonging to the genus Streptomyces. By way of its noted 16S rDNA nucleotide sequences, KH29 was found to have a relationship with Streptomyces cinnamonensis. The production of an antibiotic from this strain was found to be most favorable when cultured with glucose, polypeptone, and yeast extract (PY) medium for 6 days at $27^{\circ}C$. The antibiotic produced was identified, through comparisons with reported spectral data including MS and NMR as a cyclo(L-tryptophanyl-L-tryptophanyl). Cyclo(L-Trp-L-Trp), from the PY cultures of KH29, was seen to be highly effective against 41 of 49 multidrug-resistant Acinetobacter baumannii. Furthermore, cyclo(L-Trp-L-Trp) had antimicrobial activity against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Saccharomyces cerevisiae, Aspergillus niger, and Candida albicans, However, it was ineffective against Streptomyces murinus.