• Title/Summary/Keyword: 12-O-Tetradecanoylphorbol-13-acetate

Search Result 74, Processing Time 0.02 seconds

Effects of Flos Sophorae Ethanol Extract on NF-${\kappa}B$ Dependent MMP-9 Expression in Human Breast Cancer Cell (유방암세포에서 괴화 에탄올 추출물의 NF-${\kappa}B$ 의존적인 MMP-9 발현의 조절 규명을 위한 연구)

  • Kim, Jeong Mi;Lee, Young Rae;Hwang, Jin Ki;Kim, Mi Seong;Kim, Ha Rim;Park, Yeon Ju;You, Yong Ouk;Kim, Seong Cheol;Ryu, Do Gon;Kwon, Kang Beom
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.22-28
    • /
    • 2014
  • Flos Sophorae, the dried flower bud of Sophora japonica L, possesses anti-inflammatory properties, prevents and treats blood capillary and hypertension diseases and can also be used as a hemostat. However, the effect of Flos Sophorae on breast cancer invasion is unknown. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix, is a major component in cancer cell invasion. In this study, we investigated the inhibitory effect of Flos Sophorae extract (FSE) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced Matrix metalloproteinase-9 (MMP-9) expression and cell invasion, as well as the molecular mechanisms involved in Michigan Cancer Foundation-7 (MCF-7) cells. FSE inhibited the TPA-induced transcriptional activation of nuclear factor-kappa B (NF-${\kappa}B$). These results indicate that FSE-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of NF-${\kappa}B$ pathway in MCF-7 cells. Thus, FSE may have therapeutic potential for controlling breast cancer invasiveness.

Vimentin Is Involved in Peptidylarginine Deiminase 2-Induced Apoptosis of Activated Jurkat Cells

  • Hsu, Pei-Chen;Liao, Ya-Fan;Lin, Chin-Li;Lin, Wen-Hao;Liu, Guang-Yaw;Hung, Hui-Chih
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.426-434
    • /
    • 2014
  • Peptidylarginine deiminase type 2 (PADI2) deiminates (or citrullinates) arginine residues in protein to citrulline residues in a $Ca^{2+}$-dependent manner, and is found in lymphocytes and macrophages. Vimentin is an intermediate filament protein and a well-known substrate of PADI2. Citrullinated vimentin is found in ionomycin-induced macrophage apoptosis. Citrullinated vimentin is the target of anti-Sa antibodies, which are specific to rheumatoid arthritis, and play a critical role in the pathogenesis of the disease. To investigate the role of PADI2 in apoptosis, we generated a Jurkat cell line that overexpressed the PADI2 transgene from a tetracycline-inducible promoter, and used a combination of 12-O-tetradecanoylphorbol-13-acetate and ionomycin to activate Jurkat cells. We found that PADI2 overexpression reduced the cell viability of activated Jurkat cells in1a dose- and time-dependent manner. The PADI2-overexpressed and -activated Jurkat cells presented typical manifestations of apoptosis, and exhibited greater levels of citrullinated proteins, including citrullinated vimentin. Vimentin overexpression rescued a portion of the cells from apoptosis. In conclusion, PADI2 overexpression induces apoptosis in activated Jurkat cells. Vimentin is involved in PADI2-induced apoptosis. Moreover, PADI2-overexpressed Jurkat cells secreted greater levels of vimentin after activation, and expressed more vimentin on their cell surfaces when undergoing apoptosis. Through artificially highlighting PADI2 and vimentin, we demonstrated that PADI2 and vimentin participate in the apoptotic mechanisms of activated T lymphocytes. The secretion and surface expression of vimentin are possible ways of autoantigen presentation to the immune system.

Genome-based Gene Expression Analysis of EGCG-mediated Cell Transformation Suppression Effect in Mouse Cell line Balb/c 3T3 A31-1-1 (마우스세포주 Balb/c 3T3 A31-1-1에서 Epigallocatechin gallate(EGCG)의 세포암화 억제효과에 대한 유전자발현 해석)

  • Jung, Ki-Kyung;Suh, Soo-Kyung;Kim, Tae-Gyun;Park, Moon-Suk;Lee, Woo-Sun;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.4
    • /
    • pp.125-132
    • /
    • 2006
  • Previous studies showed that epigallocatechin gallate(EGCG) have substantial effects of suppressing the N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)-initiated cell transformation process on the bases of foci formation frequency and loss of anchorage dependency. In this study we tried to clarify the molecular mechanism of suppressing the cell transformation process. Mouse cell line balb/c 3T3 A31-1-1 was exposed 2 days to MNNG followed by 15 days 12-O-tetradecanoylphorbol-13-acetate(TPA) treatment for our transformation process. EGCG was added after the time point of 24 hours exposure to TPA and incubated for 19 days. 2029 genes were selected in our transformation process that showed fold change value of 1.5 or more in the microarray gene expression analysis covering the mouse full genome. These genes were found to be involved mainly in the cell cycle pathway, focal adhesion, adherens junction, TGE-$\beta$ signaling, apoptosis, lysine degradation, insulin signaling, ECM-receptor interaction. Among the genes, we focused on the 631 genes(FC>0.5) reciprocally affected by EGCG treatment. Our study suggest that EGCG down-regulate the gene expressions of up stream signaling factors such as nemo like kinase with MAPK activity and PI3-Kinase, Ras GTPase and down stream factors such as cyclin D1, D2, H, T2, cdk6.

  • PDF

Aurora kinase A induces migration and invasion by inducing epithelial-to-mesenchymal transition in colon cancer cells

  • Hong, On-Yu;Kang, Sang Yull;Noh, Eun-Mi;Yu, Hong-Nu;Jang, Hye-Yeon;Kim, Seong-Hun;Hong, Jingyu;Chung, Eun Yong;Kim, Jong-Suk
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.87-91
    • /
    • 2022
  • Aurora kinase is a family of serine/threonine kinases intimately associated with mitotic progression and the development of human cancers. Studies have shown that aurora kinases are important for the protein kinase C (PKC)-induced invasion of colon cancer cells. Recent studies have shown that aurora kinase A promotes distant metastasis by inducing epithelial-to-mesenchymal transition (EMT) in colon cancer cells. However, the role of aurora kinase A in colon cancer metastasis remains unclear. In this study, we investigated the effects of aurora kinase A on PKC-induced cell invasion, migration, and EMT in human SW480 colon cancer cells. Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) changed the expression levels of EMT markers, increasing α-SMA, vimentin, and MMP-9 expression and decreasing E-cadherin expression, with changes in cell morphology. TPA treatment induced EMT in a PKC-dependent manner. Moreover, the inhibition of aurora kinase A by siRNAs and inhibitors (reversine and VX-680) suppressed TPA-induced cell invasion, migration, and EMT in SW480 human colon cells. Inhibition of aurora kinase A blocked TPA-induced vimentin and MMP-9 expression, and decreased E-cadherin expression. Furthermore, the knockdown of aurora kinase A decreased the transcriptional activity of NF-κB and AP-1 in PKC-stimulated SW480 cells. These findings indicate that aurora kinase A induces migration and invasion by inducing EMT in SW480 colon cancer cells. To the best of our knowledge, this is the first study that showed aurora kinase A is a key molecule in PKC-induced metastasis in colon cancer cells.