• Title/Summary/Keyword: 1100 m site of Mt. Halla

Search Result 10, Processing Time 0.021 seconds

Chemical characteristics of wet precipitation in urban and mountainous sites of Jeju Island

  • Bu, Jun-Oh;Song, Jung-Min;Park, Sook-Young;Kang, Hee-Ju;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.33-41
    • /
    • 2020
  • Wet precipitation samples were collected in Jeju City and Mt. Halla-1100 site (a site at an altitude of 1100 m on Mt. Halla) during 2011-2013, and their major ionic species were analyzed to examine the chemical composition and characteristics. A comparison of ion balance, electric conductivity, and acid fraction of precipitation revealed correlation coefficients in the range of r = 0.950~0.991, thereby implying the high quality of analytical data. Volume-weighted mean pH and electric conductivity corresponded to 4.86 and 25.5 µS/cm for Jeju City, and 4.98 and 15.1 µS/cm for Mt. Halla-1100 site, respectively. Ionic strengths of the wet precipitation in Jeju City and Mt. Halla-1100 site corresponded 0.3 ± 0.5 and 0.2 ± 0.2 mM, respectively, thereby indicating that more than 30 % of total precipitation was within a pure precipitation criteria. The precipitation with a pH range of 4.5 - 5.0 corresponded to 40.8 % in Jeju City, while the precipitation with a pH range of 5.0 - 5.5 corresponded to 56.9 % in Mt. Halla-1100 site, thereby indicating slightly more weak acidity than that in Jeju city. The volume-weighted mean concentration (µeq/L) of ionic species was in the order of Na+ > Cl- > nss-SO42- > NO3- > Mg2+ > NH4+ > H+ > nss-Ca2+ > PO43- > K+ > CH3COO- > HCOO- > NO2- > F- > HCO3- > CH3SO3- at Jeju City area, while it corresponded to Na+ > Cl- > nss-SO42- > NO3- > NH4+ > H+ > Mg2+ > nss-Ca2+ > PO43- > CH3COO- > K+ > HCOO- > NO2- > F- > HCO3- > CH3SO3- at Mt. Halla-1100 site. The compositions of sea salts (Na+, Cl-, Mg2+) and secondary pollutants (NH4+, nss-SO42-, NO3-) corresponded to 66.1 % and 21.8 %, respectively, in Jeju City and, 49.9 % and 31.5 %, respectively, in Mt. Halla-1100 site. The acidity contributions in Jeju City and Mt. Halla-1100 site by inorganic acids, i.e., sulfuric acid and nitric acid, corresponded to 93.9 % and 91.4 %, respectively, and the acidity contributions by organic acids corresponded to 6.1 % and 8.6 %, respectively. The neutralization factors in Jeju City and Mt. Halla1100 site by ammonia corresponded to 29.8 % and 30.1 %, respectively, whereas the neutralization factors by calcium carbonate corresponded to 20.5 % and 25.2 %, respectively. From the clustered back trajectory analysis, the concentrations of most ionic components were higher when the airflow pathways were moved from the continent to Jeju area.

Analysis of Rainwater in Clean Air Area : Characteristics of Rainwater at 1100 Site of Mt. Halla and Cheju City in 1997-1998 (청정 강우의 분석:1997-1998년 한라산 1100 고지와 제주시 강우의 특성)

  • 강창희;김원형;홍상범;이기호;홍민선;심상규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.555-566
    • /
    • 1999
  • The rainwater samples were collected from the 1100 Site of Mt. Halla and Cheju city during the period of March in 1997 to August in 1998, and the major soluble ions were analyzed. The confidence of analytical data was confirmed by using the comparison methods such as ino-balance, electric conductivity and acid fraction, all of which correlation coefficients were above 0.94. The ionic strengths lower than $10^{-4}$ M, the basis for the pure rainwater, were found in 47% and 38% at 1100 Site and Cheju city, respectively. The precipitations in Cheju city were more influenced by the oceanic effect than those in 1100 Site. The acidity contribution was mainly by $SO_4^{2-}$ and $NO_3^-$ in both areas, and the organic acids have contributed to the acidity with only 5~7%. The neutralization factors by $NH_3$ were about 46% at both 1100 site and Cheju city, whereas those by $CaCO_3$ were 11% and 15% at 1100 site and Cheju city respectively, and the free acidity were both about 35% in average. From the MSA analysis, it was found that the air in Cheju island has been influenced by the pollution from the other areas. The sources of the rainwater components in 1100 Site and Cheju city were also studied with a factor analyzing way, and the most probable factors were found to be anthropotgenic, oceanic, and soil-sourced. The results of multiple regression analysis have shown that $SO_4^{2-}$ was dissolved mostly in the form of $H_2SO_4, CaSO_4 and (NH_4)_2SO_4$, and $NO_3^-$ was in the form of $HNO_3, Ca(NO_3)_2 and NH_4NO_3$.

  • PDF

Comparison of Characteristics for Atmospheric Aerosols between Gosan Site and 1100 Site in Mt. Halla, Jeiu Isalnd (제주도 고산지역과 한라산 1100고지 대기 에어로졸의 특성 비교)

  • 고희철;강창희;고선영;고수연;김용표;한진석
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.374-375
    • /
    • 2003
  • 산업화에 따른 화석 연료의 연소, 기타 오염원에 의하여 생성되는 대류권의 에어로졸은 전 지구적인 평균값으로 볼 때, 약 -0.5 W/$m^2$의 복사강제력(radiative forcing)을 갖는 것으로 보고되고 있다. 이러한 음의 복사강제력은 일산화탄소, 염화불화탄소, 메탄 등과 같은 온실기체에 의한 양의 복사강제력을 상쇄시키는 정도보다 더 클 수 있다고 추측되고 있어 지속적으로 관리가 필요한 것으로 보인다. 본 연구는 국내에서 청정지역으로 꼽히고 있는 제주도 고산 측정소와 한라산 1100 고지 지역에서 에어로졸 시료를 채취하고, 고도에 따라 에어로졸 조성이 어느 정도 차이를 보이는지, 그리고 고도에 따라 에어로졸 성분의 특성이 어떻게 다른지를 비교하기 위한 목적으로 수행되었다. (중략)

  • PDF

Compositions and Characteristics of Atmospheric Aerosols Collected at the 1100 Site in Mt. Halla, Jeiu (제주도 한라산 1100 고지 대기 에어로졸의 조성 및 특성)

  • 김원형;강창희;신찬성;고선영;홍민선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.145-156
    • /
    • 2003
  • The atmospheric aerosols collected at the 1100 site located in Mt. Halla have been analyzed to investigate their compositions and chemical characteristics . The average concentrations of water-soluble cations were in the order of N $H_{4}$$^{+}$ > $Ca^{2+}$ > N $a^{+}$ > $K^{+}$ > $Mg^{2+}$ during the spring, showing high increase of $Ca^{2+}$ concentration with the value of 0.60 $\mu\textrm{g}$/ $m^3$, and N $H_{4}$$^{+}$> N $a^{+}$> $K^{+}$> $Ca^{2+}$ > $Mg^{2+}$ during the other seasons. The average concentrations of anions have shown in the order of S $O_{4}$$^{2-}$ > N $O_{3}$$^{[-10]}$ >C $l^{[-10]}$ for all seasons, and S $O_{4}$$^{2-}$ and N $O_{3}$$^{[-10]}$ had higher concentrations in spring with the values of 4.84 $\mu\textrm{g}$/ $m^3$ and 1.08 $\mu\textrm{g}$/ $m^3$, respectively. From the analytical data of size-segregated particles by cascade impactor sampling, the components of N $H_{4}$$^{+}$, S $O_{4}$$^{2-}$, N $O_{3}$$^{[-10]}$ and $K^{+}$ were distributed mainly in fine particles, but $Ca^{2+}$, N $a^{+}$, $Mg^{2+}$ and C $l^{[-10]}$ were included mostly in coarse particles. The correlation coefficients of nss-S $O_{4}$$^{2-}$/N $H_{4}$$^{+}$, nss-S $O_{4}$$^{2-}$/ $K^{+}$ and N $O_{3}$$^{[-10]}$ /nss-C $a^{2+}$ showed quite high values with 0.871, 0.857 and 0.654, respectively Based on the study of enrichment factors, it is considered that N $a^{+}$, $Mg^{2+}$, C $l^{[-10]}$ and $Ca^{2+}$ components were delivered from oceanic and soil sources, but S $O_{4}$$^{2-}$, N $O_{3}$$^{[-10]}$ and N $H_{4}$$^{+}$ might have other source origins. The factor analysis study showed the aerosol at the 1100 site was influenced mainly by anthropogenic factors, followed by oceanic and soil factors. followed by oceanic and soil factors.

Chemical Composition Characteristics of Fine Particulate Matter at Atmospheric Boundary Layer of Background Area in Fall, 2012 (배경지역 대기경계층 미세먼지의 화학조성 특성: 2012년 가을 측정)

  • Ko, Hee-Jung;Lee, Yoon-Sang;Kim, Won-Hyung;Song, Jung-Min;Kang, Chang-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.3
    • /
    • pp.267-276
    • /
    • 2014
  • The collection of $PM_{10}$ and $PM_{2.5}$ fine particulate matter samples was made at the 1100 m site of Mt. Halla of Jeju Island, located at the atmospheric boundary layer (ABL) of background area, during the fall of 2012. Their ionic and elemental species were analyzed, in order to investigate the chemical compositions and size distribution characteristics. In $PM_{2.5}$ fine particles ($d_p$ < $2.5{\mu}m$), the concentrations of the secondary formed nss-$SO{_4}^{2-}$, $NH_4{^+}$ and $NO_3{^-}$ species were 4.84, 1.98, and $1.27{\mu}g/m^3$, respectively, showing 58.2% of the total $PM_{2.5}$ mass. On the other hand, their concentrations in $PM_{10-2.5}$ coarse particles (2.5 < $d_p$ < $10{\mu}m$) were 0.63, 0.21 and $1.10{\mu}g/m^3$, respectively, occupying 22.8% of the total $PM_{10-2.5}$ mass. The comparative study of size distribution has resulted that $NH_4{^+}$, nss-$SO{_4}^{2-}$, $K^+$ and $CH_3COO^-$ are mostly existed in fine particles, and $NO_3{^-}$ is distributed in both fine and coarse particles, but $Na^+$, $Cl^-$, $Mg^{2+}$ and nss-$Ca^{2+}$ are rich in coarse particle mode.

Studies on Pollution Characteristics and Sources of Precipitation in Jeiu Island

  • Kang, Chang-Hee;Kim, Won-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E4
    • /
    • pp.191-201
    • /
    • 2002
  • The pH, electric conductivity. and the major ionic components were analyzed for the precipitation samples collected at 1100 Site of Mt. Halla and Jeju city. The quality of analytical data was verified by the comparison of ion balances, conductivities and acid fractions, all of which correlation coefficients were over 0.952. The ionic strengths lower than 10$^{-4}$ M were found in 57 and 28% at 1100 Site and Jeju city respectively. The precipitation in Jeju city was influenced more by the oceanic effect than those in 1100 Site. The acidification of precipitation was caused mostly by S $O_4$$^{2-}$and N $O_3$$^{[-10]}$ in both areas, and the organic acids have contributed to the acidity with only 7~8%. The neutralization factors by N $H_3$ were about 44 and 47% at the 1100 site and the Jeju city, respectively, whereas those by CaC $O_3$were 21 and 24%, and the free acidity were about 38 and 28% at two sites. From the investigation of seawater and soil enrichment factors, the S $O_4$$^{2-}$, N $O_3$$^{[-10]}$ and N $E_4$$^{+}$ were immigrated by other sources rather than from the seawater or soil origins. but not in the case of $Mg^{2+}$, C $l^{[-10]}$ , N $a^{+}$, and $K^{+}$. Factor analysis has shown that the precipitation at the 1100 site had been influenced mostly by anthropogenic sources, followed by soil and sea-water sources. On the other hand, the precipitation at the Jeju city was mainly influenced by oceanic sources, followed by anthropogenic and soil sources.urces.

Chemical characteristics of PM2.5 fine particles collected at 1100 site of Mt. Halla during spring seasons between 1998 and 2004 (1998-2004년 봄철에 한라산 1100 고지에서 채취한 PM2.5 미세먼지의 화학 특성)

  • Kim, Won-Hyung;Kang, Chang-Hee;Hong, Sang-Bum;Ko, Hee-Jung;Lee, Won
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.383-392
    • /
    • 2007
  • The water soluble components were analyzed in the $PM_{2.5}$ fine particles collected at the 1100 site of Mt. Halla for the spring seasons between 1998 and 2004. The $PM_{2.5}$ mass concentrations were within $13.4{\pm}9.6{\sim}21.7{\pm}20.0{\mu}g/m^3$, and the concentrations of ionic components were in the order of nss-$SO{_4}^{2-}$ > $NH{_4}{^+}$ > $NO{_3}{^-}$ > $Ca^{2+}$ > $K^+$ > $Na^+$ > $Cl^-$ > $Mg^{2+}$, in which the concentration of nss-$SO{_4}^{2-}$($3.41{\pm}2.42{\mu}g/m^3$) was the highest. The concentrations of $NH{_4}{^+}$, $SO{_4}^{2-}$, and $NO{_3}{^-}$, the secondary pollutants, were respectively 0.60~1.50, 2.86~4.42, and $0.24{\sim}1.57{\mu}g/m^3$, which had occupied 88 % of the total ionic components, on the other hand, the concentrations of marine species were less than 5 %. The nss-$SO{_4}^{2-}$ showed the high correlation with $NH{_4}{^+}$, $K^+$, so that $NH{_4}{^+}$ and nss-$SO{_4}^{2-}$ might exist in the form of $(NH_4)_3H(SO_4)_2$ and $(NH_4)_2SO_4$ in fine particles. From the backward trajectory analysis, in case of high concentrations of $NH{_4}{^+}$ and nss-$SO{_4}^{2-}$ simultaneously, the air masses were originated and stagnated at the east region of China for a while, then moved into the atmosphere of Jeju. However, in case of $NO{_3}{^-}$ and nss-$Ca^{2+}$, the air masses originated at China and Siberia were moved into Jeju via the eastern China.

Chemical Composition Characteristics of Precipitation at Two Sites in Jeju Island

  • Kang, Chang-Hee;Kim, Won-Hyung;Lee, Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.363-368
    • /
    • 2003
  • The major ionic components of precipitation collected at the 1100 Site of Mt. Halla and Jeju city have been determined. The reliability of the analytical data was verified by the comparison of ion balances, electric conductivities and acid fractions; all of their correlation coefficients were above 0.94. Ionic strengths lower than $10^{-4}$ M were found in 53% of the 1100 Site samples and 28% of the Jeju city samples. Compared with other inland areas, the wet deposition of $Na^+,\;Cl^-\;and\;Mg^{2+}$ was relatively larger, but that of $NH_4^+,\;nss-SO_4^{2-}$(non-sea salt sulfate) and $NO_3^-$ was lower. Especially the wet deposition increase of $Ca^{2+}$ in the spring season supports the possibility of the Asian Dust effect. The acidification of precipitation was caused mostly by $SO_4^{2-}\;and\;NO_3^-$ in the Jeju area, and the organic acids have contributed only about 7% to the acidity. The neutralization factors by NH₃were 0.47 and 0.48, and that of CaCO₃was 0.31 and 0.25 at the 1100 Site and Jeju city, respectively. Investigation into major influencing sources on precipitation components by factor analysis showed that the precipitation at the 1100 Site had been influenced mostly by an anthropogenic source, followed by soil and seawater sources. The precipitation at Jeju city was mainly influenced by oceanic sources, followed by anthropogenic and soil sources.

Composition and emission characteristics of fine particulate matters at the 1100 Site of Mt. Halla during 2011-2012 (한라산 1100고지 대기 미세먼지의 조성 및 배출 특성: 2011~2012년 측정)

  • Song, Jung-Min;Bu, Jun-Oh;Kim, Won-Hyung;Ko, Hee-Jung;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.209-218
    • /
    • 2016
  • PM10 and PM2.5 samples were collected at the 1100 site of Mt. Halla in Jeju Island during 2011~2012, and their ionic and elemental species were analyzed, in order to investigate the characteristics of emission sources as well as aerosol compositions. The mass concentrations of PM10 and PM2.5 were 22.0±13.1 µg/m3 and 11.3±6.1 µg/m3, respectively, showing 2.4~2.6 times lower than those of the capital city area of Korea. The composition ratios of major secondary pollutants (nss-SO42−, NH4+, and NO3) were the highest as 85.5 % for PM10 and 91.3 % for PM2.5, and followed by the order of marine (Na+, Cl, and Mg2+), organic acid (HCOO and CH3COO), and soil (nss-Ca2+) sources. Among the elemental species in PM10, soil-originated components (Al, Fe, and Ca) were consisted of 50.9 %, which was higher proportion than marine and anthropogenic elements. The acidification of the fine particulate matters was found to be influenced mostly by sulfuric and nitric acids, and these acids were mainly neutralized by calcium carbonate in PM10 and by ammonia in PM2.5. The clustered back trajectories showed that 47 % of total air mass inflows was from the China, and the concentrations of NO3 and nss-Ca2+ were especially high corresponding to the inflows.

Comparison of Chemical Compositions of Size-segregated Atmospheric Aerosols between Asian Dust and Non-Asian Dust Periods at Background Area of Korea

  • Kim, Won-Hyung;Song, Jung-Min;Ko, Hee-Jung;Kim, Jin Seog;Lee, Joung Hae;Kang, Chang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3651-3656
    • /
    • 2012
  • The size-segregated atmospheric aerosols have been collected at 1100 m site of Mt. Halla in Jeju, a background area in Korea, using 8-stage cascade impact air sampler during Asian dust and non-Asian dust storm periods. Their ionic and elemental species were analyzed, in order to examine the pollution characteristics and composition change between Asian dust and non-Asian dust periods. The major ionic species such as nss-$SO_4{^{2-}}$, $NH_4{^+}$, and $K^+$ were predominantly distributed in the fine particles (below $2.1{\mu}m$ diameter), and besides the $NO_3{^-}$ was distributed more in coarse particle fraction than fine particle. On the other hand, the typical soil and marine species i.e., nss-$Ca^{2+}$, $Na^+$, $Cl^-$, and $Mg^{2+}$, were mostly existed in the coarse particles (over $2.1{\mu}m$ diameter). As well in the elemental analysis of aerosols, the major soil-originated Al, Fe, Ca, and others showed prominently high concentrations in the coarse particle fraction, whereas the anthropogenic S and Pb were relatively high in the fine particle fraction. From the comparison of aerosol compositions between Asian dust and non-Asian dust periods, the concentrations of the soil-originated species such as nss-$Ca^{2+}$, Al, Ca, Fe, Ti, Mn, Ba, Sr have increased as 2.7-4.2 times during the Asian dust periods. Meanwhile the concentrations of nss-$SO_4{^{2-}}$ and $NO_3{^-}$ have increased as 1.4 and 2.0 times, and on the contrary $NH_4{^+}$ concentrations have a little bit decreased during the Asian dust periods. Especially the concentrations of both soil-originated ionic and elemental species increased noticeably in the coarse particle mode during the dust storm periods.