• Title/Summary/Keyword: 10MWT

Search Result 616, Processing Time 0.02 seconds

Dialysis with ultrafiltration through countercurrently parallel-flow membrane modules

  • Yeh, Ho-Ming;Chen, Chien-Yu
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.191-202
    • /
    • 2013
  • The application of ultrafiltration operation to the dialysis in countercurrently parallel-flow rectangular membrane modules was investigated. The assumption of uniform ultrafiltration flux was made for operation with slight concentration polarization and declination of transmembrane pressure. Considerable improvement in mass transfer is achievable if the operation of ultrafiltration is applied, especially for the system with low mass transfer coefficient. The enhancement in separation efficiency is significantly increased with increasing ultrafiltration flux, as well as with increasing the volumetric flow rates. Furthermore, increasing the volumetric flow rate in retentate phase is more beneficial to mass transfer than increasing in dialysate phase.

Treatment of organic dye solutions by electrodialysis

  • Majewska-Nowak, Katarzyna M.
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.203-214
    • /
    • 2013
  • Laboratory tests were performed to determine the efficiency of dye solution desalination by electrodialysis. The study involved anionic dye and mineral salt recovery by obtaining two streams from a salt and dye mixture - dye-rich solution and salt solution. A standard anion-exchange and cation-exchange membranes or monovalent selective anion-exchange membranes were used in the ED stack. It was found that the separation efficiency was strongly dependent on the dye molecular weight. The best results for standard ion-exchange membranes were achieved for the desalination of Direct Black solution. Furthermore, the obtained results implied that the application of monovalent selective anion-exchange membranes improved the recovery of dye and salt solutions - the dye concentration in the diluate remained constant irrespective of the molecular weight of anionic dyes, whereas the salt recovery remained very high (99.5%).

On the drying out of bipolar membranes

  • Kedem, Ora;Ghermandi, Andrea;Messalem, Rami
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.215-222
    • /
    • 2013
  • The maximum current density that can be achieved in bipolar membrane electrodialysis is limited by the sharp increase in resistance that is experienced when the water content at the membrane interface is not adequately replenished and the membranes dry out. In this paper we show how the water content near the interface depends on the properties of the membranes. A water retaining parameter is introduced, which characterizes the thermodynamic properties of the membrane material and may be used to guide the choice of polymers for mitigation of the dry-out problem.

Removal of Cd(II) from water using carbon, boron nitride and silicon carbide nanotubes

  • Azamat, Jafar;Hazizadeh, Behzad
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • Molecular dynamics simulations were used to study the removal of Cd(II) as a heavy metal from wastewater using armchair carbon nanotube, boron nitride nanotube and silicon carbide nanotubes under applied electric field. The system contains an aqueous solution of $CdCl_2$ as a heavy metal and a (7,7) nanotube as a nanostructured membrane, embedded in a silicon nitride membrane. An external electric field was applied to the considered system for the removal of $Cd^{2+}$ through nanotubes. The simulation results show that in the same conditions, considered armchair nanotubes were capable to remove $Cd^{2+}$ from wastewater with different ratios. Our results reveal that the removal of heavy metals ions through armchair carbon, boron nitride and silicon carbide nanotubes was attributed to the applied electric field. The selective removal phenomenon is explained with the calculation of potential of mean force. Therefore, the investigated systems can be recommended as a model for the water treatment.

Morphological features of thermophilic activated sludge treating food industry wastewater in MBR

  • Ince, Mahir;Topaloglu, Alikemal;Ince, Elif
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.33-42
    • /
    • 2018
  • Microscopic examination of the activated sludge and morphological characterization of the flocs provides detailed information about the treatment process. The aim of this study is to investigate the morphological parameters of flocs obtained from a thermophilic jet loop membrane bioreactor (JLMBR) in different sludge retention times (SRTs), considering EPS and SMP concentration, hydrophobicity, zeta potential. The results showed that irregularity decreased with the increasing SRT. The compactness value was calculated to be less than 1 for all SRTs. However, the sludge had a more compact structure when the SRT increased. Zeta potential increased whereas hydrophobicity and floc size reduced, with increasing SRT. Furthermore, 2-D porosity calculated using the hole ratio was higher at greater SRTs. Hence, there was a significant correlation between the results obtained using the imaging technique and operation conditions of thermophilic JLMBR.

Performance of PEG on immobilization of zero valent metallic particles on PVDF membrane for nitrate removal

  • Chan, Yi Shee;Chan, Mieow Kee;Ngien, Su Kong;Chew, Sho Yin;Teng, Yong Kang
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The principal objective of this study is to investigate the effect of Polyethylene Glycol (PEG) crosslinking in Polyvinylidene Fluoride (PVDF) in immobilization of Fe and bimetallic Fe/Cu and Cu/Fe zero valent particles on the membrane and its efficiency on removal of nitrate in wastewater. PVDF/PEG polymer solution of three weight compositions was prepared to manipulate the viscosity of the polymer. PEG crosslinking was indirectly controlled by the viscosity of the polymer solution. In this study, PEG was used as a modifier of PVDF membrane as well as a cross-linker for the immobilization of the zero valent particles. The result demonstrates improvement in immobilization of metallic particles with the increase in crosslinking of PEG. Nitrate removal efficiency increases too.

Removal of acetic acid from wastewater by esterification in the membrane reactor

  • Unlu, Derya;Hilmioglu, Nilufer Durmaz
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.143-154
    • /
    • 2016
  • Acetic acid can be removed from wastewater by esterification in a membrane reactor. Pervaporation membrane reactor (PVMR) is an alternative process to conventional separation processes. It is an environmentally friendly process. The main advantages of the PVMR are simultaneous water removal and production of an ester economically. In this study, the synthetic wastewater has been used. Esterification reaction of acetic acid with isopropanol has been studied in the presence of tungstosilicic acid hydrate as a catalyst in a batch reactor and in a PVMR. The effects of important operating parameters such as reaction temperature, initial molar ratio of isopropanol to acetic acid and catalyst concentration has been examined. Removal of acetic acid (conversion of acetic acid) was obtained as 85% using a PVMR by removal of water from the reaction mixture.

Analysis of newly designed CDI cells by CFD and its performance comparison

  • Kwon, Se Hwan;Rhim, Ji Won
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.115-126
    • /
    • 2016
  • In this study, computational fluid dynamics (CFD) analysis was conducted to investigate the flow pattern and to find the occurrence of dead zones in an existing capacitive deionization (CDI) cell. Newly designed cells-specifically designed to avoid dead zones-were analyzed by CFD in accordance with the flow rates of 15, 25 and 35 ml/min. Next, the separation performances between the existing and newly designed cell were compared by conducting CDI experiments in terms of salt removal efficiency at the same flow rates. Then, the computational and experimental results were compared to each other. The salt removal efficiencies of the hexagon flow channel 1 (HFC1) and hexagon flow channel 2 (HFC2) were increased 88-124% at 15 ml/min and 49-50% at 25 ml/min, respectively. There was no difference between the existing cell and the foursquare flow cell (FFC) at 35 ml/min.

Fouling and cleaning of a tubular ultrafiltration ceramic membrane

  • Siddiqui, Farrukh Arsalan;Field, Robert W.
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.433-449
    • /
    • 2016
  • The successful application of cleaning protocols is vital for optimized filtration processes. A series of experiments with an ultrafiltration ceramic tubular membrane were carried out for the foulants dextran and carboxymethyl cellulose. Firstly, the impact on fouling of concentration changes was investigated with the increase in resistance being used as the key parameter. In the second phase, removal of reversible fouling was also investigated by employing intermittent rinsing consisting of a cold water rinse followed by a hot one. A comparative analysis for both foulants is reported. Across a range of concentrations and for both foulants, the reduction in resistance due to rinsing was found to depend upon concentration (C); it changed as $C^n$ where n was found to be 0.3. A plausible semi-theoretical explanation is given. Thirdly, for both foulants, the application of a combination of strong alkaline solutions with oxidizing agent (mainly sodium hypochlorite) followed by acid was found to be appropriate for cleaning of the ceramic membrane. The effect of increased temperature for cleaning agents followed by a warm water rinse contributed positively to the cleaning capability.

Simulation of transport phenomena in porous membrane evaporators using computational fluid dynamics

  • Mohammadi, Mehrnoush;Marjani, Azam;Asadollahzadeh, Mehdi;Hemmati, Alireza;Kazemi, Seyyed Masoud
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.87-100
    • /
    • 2016
  • A numerical simulation of membrane evaporation process was carried out in this work. The aim of simulation is to describe transport of water through porous membranes applicable to the concentration of aqueous solutions. A three-dimensional mathematical model was developed which considers transport phenomena including mass, heat, and momentum transfer in membrane evaporation process. The equations of model were then solved numerically using finite element method. The results of simulation in terms of evaporation flux were compared with experimental data, and confirmed the accuracy of model. Moreover, profile of pressure, concentration, and heat flux were obtained and analyzed. The results revealed that developed 3D model is capable of predicting performance of membrane evaporators in concentration of aqueous solutions.