• Title/Summary/Keyword: 1-phase excitation

Search Result 153, Processing Time 0.022 seconds

Effect of Sintering Temperature on Dielectric Properties of 72 wt%(Al2O3):28 wt%(SiO2) Ceramics

  • Sahu, Manisha;Panigrahi, Basanta Kumar;Kim, Hoe Joon;Deepti, PL;Hajra, Sugato;Mohanta, Kalyani
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.495-501
    • /
    • 2020
  • The various sintered samples comprising of 72 wt% (Al2O3) : 28 wt% (SiO2) based ceramics were fabricated using a colloidal processing route. The phase analysis of the ceramics was performed using an X-ray diffractometer (XRD) at room temperature confirming the presence of Al2O5Si and Al5.33Si0.67O9.33. The surface morphology of the fracture surface of the different sintered samples having different sizes of grain distribution. The resistive and capacitive properties of the three different sintered samples at frequency sweep (1 kHz to 1 MHz). The contribution of grain and the non-Debye relaxation process is seen for various sintered samples in the Nyquist plot. The ferroelectric loop of the various sintered sample shows a slim shape giving rise to low remnant polarization. The excitation performance of the sample at a constant electric signal has been examined utilizing a designed electrical circuit. The above result suggests that the prepared lead-free ceramic can act as a base for designing of dielectric capacitors or resonators.

Effect of silver nanoparticles on the performance of riverbank filtration: Column study (강변여과에서의 은나노입자의 영향 : 실험실규모 컬럼 실험)

  • Lee, Donghyun;No, Jin-Hyeong;Kim, Hyun-Chul;Choi, Jae-Won;Choi, Il-Hwan;Maeng, Sungkyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.77-88
    • /
    • 2015
  • Soil column experiments were evaluated effects of silver nanoparticles (i.e., 0, 2.5, 5, and 10 mg/L) on the microbial viability which is strongly associated with the degradation of organic matter, pharmaceutically active compounds(PhACs) and biological oxidation of nitrogenous compounds during river bank filtration. The addition of silver nanoparticles resulted in almost no change in the aqueous matrix. However, the intact cell concentration decreased with addition of silver nanoparticles from 2.5 to 10 mg/L, which accounted for 76% to 82% reduction compared to that of control (silver nanoparticles free surface water). The decrease in adenosine triphosphate was more pronounced; thus, the number and active cells in aqueous phase were concurrently decreased with added silver nanoparticles. Based on the florescence excitation-emission matrix and liquid chromatograph - organic carbon detection analyses, it shows that the removal of protein-like substances was relatively higher than that of humic-like substances, and polysaccharide was substantially reduced. But the extent of those substances removed during soil passage was decreased with the increasing concentration of silver nanoparticles. The attenuation of ionic PhACs ranged from 55% to 80%, depending on the concentration of silver nanoparticles. The attenuation of neutral PhACs ranged between 72% and 77%, which was relatively lower than that observed for the ionic PhACs. The microbial viability was affected by silver nanoparticles, which also resulted in inhibition of nitrifiers.

Numerical simulations of the vertical kink oscillations of the solar coronal loop with field aligned flows

  • Pandey, V.S.;Magara, T.;Lee, D.H.;Selwa, M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.103.1-103.1
    • /
    • 2011
  • Recent observations by Hinode show weakly-attenuated coronal loop oscillations in the presence of background flow (Ofman & Wang 2008, A&A, 482, L9). We study the vertical kink oscillations in solar coronal loops, considering field aligned flows inside the loops as well as surrounding the loops environment. The two dimensional numerical model of straight slab is used to explore the excitation and attenuation of the impulsively triggered fast magnetosonic standing kink waves. A full set of time dependent ideal magnetohydrodynamics equations is solved numerically taking into account the value of flow of the order of observed flows detected by SOT/Hinode. We find that relaxing the assumption of the limited flows within the loops enhances the damping rate of the fundamental mode of the standing kink waves by 2 - 3 % as compared to flow pattern which is basically localized within the loops. We further notice that extending the flow pattern beyond the loop thickness also enhances the strength of the shock associated with slow magnetoacoustic waves, recognized as an addition feature detected in the numerical simulation. The wider out-flow pattern destroys the oscillation patterns early as compared to narrower flow pattern, in other words we can say that it affects the durability of the oscillation. However, for the typical coronal loops parameters we find that the observed durability periods of the SOT/Hinode observation can be achieved with an out-flow Gaussian patterns for which half-width is not greater than factor 2.0 of the loop-half-width. explain a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

New Strategy for Eliminating Zero-sequence Circulating Current between Parallel Operating Three-level NPC Voltage Source Inverters

  • Li, Kai;Dong, Zhenhua;Wang, Xiaodong;Peng, Chao;Deng, Fujin;Guerrero, Josep;Vasquez, Juan
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.70-80
    • /
    • 2018
  • A novel strategy based on a zero common mode voltage pulse-width modulation (ZCMV-PWM) technique and zero-sequence circulating current (ZSCC) feedback control is proposed in this study to eliminate ZSCCs between three-level neutral point clamped (NPC) voltage source inverters, with common AC and DC buses, that are operating in parallel. First, an equivalent model of ZSCC in a three-phase three-level NPC inverter paralleled system is developed. Second, on the basis of the analysis of the excitation source of ZSCCs, i.e., the difference in common mode voltages (CMVs) between paralleled inverters, the ZCMV-PWM method is presented to reduce CMVs, and a simple electric circuit is adopted to control ZSCCs and neutral point potential. Finally, simulation and experiment are conducted to illustrate effectiveness of the proposed strategy. Results show that ZSCCs between paralleled inverters can be eliminated effectively under steady and dynamic states. Moreover, the proposed strategy exhibits the advantage of not requiring carrier synchronization. It can be utilized in inverters with different types of filter.

Ultrasonic guided waves-based fatigue crack detection in a steel I-beam: an experimental study

  • Jiaqi Tu;Xian Xu;Chung Bang Yun;Yuanfeng Duan
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.13-27
    • /
    • 2023
  • Fatigue crack is a fatal problem for steel structures. Early detection and maintenance can help extend the service life and prevent hazards. This paper presents the ultrasonic guided waves-based (UGWs-based) fatigue crack detection of a steel I-beam. The semi-analytical finite element model has been built to obtain the wave propagation characteristics. Damage indices in both time and frequency domains were analyzed by considering the characteristic variations of UGWs including the amplitude, phase angle, and wave packet energy. The pulse-echo and pitch-catch methods were combined in the detection scheme. Lab-scale experiments were conducted on welded steel I-beams to verify the proposed method. Results show that the damage indices based on the characteristic variations in the time domain can identify and localize the fatigue crack before it enters the rapid growth stage. The damage severity can be reasonably evaluated by analyzing the time-domain damage indices. Two nonlinear damage indices in the frequency domain give earlier warnings of the fatigue crack than the time-domain damage indices do. The identification results based on the above two nonlinear indices are found to be less consistent under various excitation frequencies. More robust nonlinear techniques needed to be searched and tested for early crack detection in steel I-beams in further study.

Determination of benzo(a)pyrene in olive oils (올리브유 중 벤조피렌 분석)

  • Hu, Soojung;Woo, Gun-Jo;Choi, Dongmi
    • Analytical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.170-175
    • /
    • 2007
  • To determine levels of benzopyrene in olive oils, a selective analytical method of HPLC/FLD has been applied. After removing fat in food samples with hexane, it was extracted in aqueous N,N-DMF solution, cleaned-up on florisil SPE cartridge and analyzed by the instrumental analysis. The mobile phase was a mixture of acetonitrile and water in 8:2 by the isocratic elution and the excitation wavelength of fluorescence detector was 294 nm and emission wavelength of it was 404 nm. The average recovery was about 95 % and the limit of quantitation was $0.9{\mu}g/kg$. The levels of benzopyrene in the selected olive oil samples were ranged from not detected to $1.9{\mu}g/kg$, however, they were under $2.0{\mu}g/kg$, the maximum level of benzopyrene in olive oil which was established in the food code.

Preparation and Properties of Spherical BaMgAl10O17:Eu Phosphor by Multi-step Precipitation Method (다단 침전법에 의한 구형 BaMgAl10O17:Eu 형광체의 제조 및 특성)

  • Park, Jumg-Min;Jung, Ha-Kyun;Park, Hee-Dong;Park, Yoon-Chang
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.840-844
    • /
    • 2002
  • A spherical $BaMgAl_{10}$ $O_{17}$ :Eu phosphor has been synthesized by a multi-step precipitation route. In order to successfully synthesize the phosphor with spherical shape, the hydrated-alumina particles should be controlled for spherical shape. In this process, the hydroxypropyl cellulose (HPC) was used as a dispersing reagent. This reagent plays an important role in that the particles were controlled to have the uniform size of sub-micron. The final product prepared by the multi-step precipitation method maintained spherical shape with uniform size of 0.4$\mu\textrm{m}$. It can be seen in X-ray diffraction patterns, formation of the single phase of $BaMgAl_{10}$ $O_{17}$ :Eu phosphor prepared by the multi-step precipitation method at $1350^{\circ}C$. Also, the emission spectra of spherical $BaMgAl_{O}$ $10_{17}$ :Eu phosphor in the present case was compared with those of commercially-available blue phosphor under VUV (Vacuum Ultra Violet) excitation. The luminescence process of the $BaMgAl_{10}$ $O_{17}$ :Eu phosphor is characterized by the $4f^{6}$$5d^1$longrightarrow4f$^{7}$ transition (blue) of the $Eu^{2+}$ ion acting as an activating center and the maximum luminescence intensity was obtained by reduction treatment at 145$0^{\circ}C$.

Validation of and HPLC Method for Nadolol in Human Plasma and Evaluation of Its Pharmacokinetics after a Single-dose in Korean Volunteers (인체 혈장 중 나돌올의 HPLC 분석법 검증 및 단회투여 후 약물동태 연구)

  • Kang, Choon-Mo;Trung, Tarn-Quoc;Kim, Kyeong-Ho;Myung, Ja-Hye;Hwang, Sung-Joo;Kim, Mi-Young;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.431-436
    • /
    • 2005
  • A high-performance liquid chromatographic method was validated for quantitation of nadolol in human plasma. Nadolol and internal standard, pindolol, were extracted with tert-butyl methyl ether after addition of 10 M sodium hydroxide solution. The analytes were separated on a reverse phased C18 column using a mobile phase consisting of 0.05 M ammonium phosphate monobasic buffer, acetonitrile and methanol (81: 17:2 v/v/v) and detected using a fluorescence detector (excitation wavelength 230 nm, emission wavelength 294 nm). The method was specific and sensitive enough to detect as low as 3 ng/mL of nadolol in human plasma. Linear calibration range was 3-150 ng/mL with correlation coefficient greater than 0.999. The overall accuracy was in the range of 96.8 to 103% and precision C.V.(%) 7.30 to 12.2%. The recovery was approximately 100% and stability was confirmed during storage and sample preparation. The present HPLC method was successfully applied to study bioavailability after oral administration of 80 mg of nadolol in healthy Korean subjects. The mean $AUC_{t}$ was $1968{\pm}397\;ng{\cdot}hr/mL$ and $C_{max}$ of $186{\pm}79.3\;ng/mL$ was reached at $3.5{\pm}0.76\;hr$. The mean $t_{1/2}$ of nadolol was $17.3{\pm}2.59\;hr$.

ZnO thin films with Cu, Ga and Ag dopants prepared by ZnS oxidation in different ambient

  • Herrera, Roberto Benjamin Cortes;Kryshtab, Tetyana;Andraca Adame, Jose Alberto;Kryvko, Andriy
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.193-201
    • /
    • 2017
  • ZnO, ZnO: Cu, Ga, and ZnO: Cu, Ga, Ag thin films were obtained by oxidization of ZnS and ZnS: Cu, Ga films deposited onto glass substrates by electron-beam evaporation from ZnS and ZnS: Cu, Ga targets and from ZnS: Cu, Ga film additionally doped with Ag by the closed space sublimation technique at atmospheric pressure. The film thickness was about $1{\mu}m$. The oxidation was carried out at $600-650^{\circ}C$ in air or in an atmosphere containing water vapor. Structural characteristics were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). Photoluminescence (PL) spectra of the films were measured at 30-300 K using the excitation wavelengths of 337, 405 and 457.9 nm. As-deposited ZnS and ZnS: Cu, Ga films had cubic structure. The oxidation of the doped films in air or in water vapors led to complete ZnO phase transition. XRD and AFM studies showed that the grain sizes of oxidized films at wet annealing were larger than of the films after dry annealing. As-deposited doped and undoped ZnS thin films did not emit PL. Shape and intensity of the PL emission depended on doping and oxidation conditions. Emission intensity of the films annealed in water vapors was higher than of the films annealed in the air. PL of ZnO: Cu, Ga films excited by 337 nm wavelength exhibits UV (380 nm) and green emission (500 nm). PL spectra at 300 and 30 K excited by 457.9 and 405 nm wavelengths consisted of two bands - the green band at 500 nm and the red band at 650 nm. Location and intensities ratio depended on the preparation conditions.

CORRELATIONS BETWEEN HIPPOCAMPAL THETA RHYTHM AND INTRACELLULAR CHARACTERISTICS OF PYRAMIDAL NEURONS (해마 theta 리듬과 pyramidal neuron의 세포내 특성과의 상관관계)

  • Kwon, Oh-Heung;Kim, Young-Jin;Nam, Soon-Hyeun;Kim, Hyeun-Jung;Lee, Man-Gee;Cho, Jin-Hwa;Choi, Byung-Ju
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.4
    • /
    • pp.671-682
    • /
    • 1998
  • Electrophysiological phenomena of pyramidal cells in the CA1 area of the dorsal hippocampus were recorded from and filled with neurobiotin in anesthetized rats. The electropharmacological properties of membrane as well as the cellular-synaptic generation of rhythmic slow activity (theta) were examined. The intracellular response characteristics of these pyramidal cells were distinctly different from responses of interneurons. Pyramidal cells had a high resting membrane potential, a low input resistance, and a large amplitude action potential. A afterhyperpolarization was followed a single action potential. Most of pyramidal cells did not display a spontaneous firing. Pyramidal cells displayed weak inward rectification and anodal break excitation. The slope of the frequency-current relation was 53.4 Hz/nA for the first interspike interval and 15.9 Hz/nA for the last intervals, suggesting the presence of spike frequency adaptation. Neurobiotin-filled neurons showed pyramidal morphology. Cells were generally bipolar dendritc processes ramifying in stratum lacunosum-moleculare, radiatum, and oriens. Commissural stimulation discharged pyramidal cells, followed by excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs). The frequency of theta-related membrane potential oscillation was voltage-independent in pyramidal neurons. At strong depolarization levels (less than 30 mV) pyramidal cells emitted sodium spike oscillation, phase-locked to theta. The observations provide direct evidence that theta-related rhythmic hyperpolarization of principal cells is brought by the rhythmically discharging interneurons. Furthermore, the findings in which interneurons were also paced by rhythmic inhibitory postsynaptic potentials during theta suggest that they were periodically hyperpolarized by their GABAergic septal afferents.

  • PDF