• Title/Summary/Keyword: 1-long terminal repeat

Search Result 26, Processing Time 0.115 seconds

Insertional Mutation of the Rice Blast Resistance Gene, Pi-b, by Long Terminal Repeat of a Retrotransposon

  • Jwa, Nam-Soo;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.16 no.2
    • /
    • pp.105-109
    • /
    • 2000
  • The Pi-b is the rice gene conferring race specific resistance to the blast fungus Magnaporthe grisea race having a corresponding avirulence gene, AVR-Pi-b. All resistant cultivars have two copies of the Pi-b gene, but susceptible cultivars have a single copy of the gene. About 1 Kbp insertion sequence was detected in the open reading frame of the Pi-b gene from the susceptible cv. Nipponbare. The nature of insertion sequence was identified as a solo long terminal repeat (LTR) of new rice Tyl-copia-like retrotransposon. LTR was widely distributed in the rice genome. Various types of different patterns of restriction fragment length polymorphism of LTR were detected in indica cultivars, whereas a single type was detected from japonica cultivars. The insertion of LTR sequence in the Pi-b gene in the susceptible cultivar suggested that retrotransposon-mediated insertional mutation might played an important role in the resistance breakdown as well as evolution of resistance genes in rice.

  • PDF

Evolutionary course of CsRn1 long-terminal-repeat retrotransposon and its heterogeneous integrations into the genome of the liver fluke, Clonorchis sinensis

  • Bae, Young-An;Kong, Yoon
    • Parasites, Hosts and Diseases
    • /
    • v.41 no.4
    • /
    • pp.209-219
    • /
    • 2003
  • The evolutionary course of the CsRn1 long-terminal-repeat (LTR) retrotransposon was predicted by conducting a phylogenetic analysis with its paralog LTR sequences. Based on the clustering patterns in the phylogenetic tree, multiple CsRn1 copies could be grouped into four subsets, which were shown to have different integration times. Their differential sequence divergences and heterogeneous integration patterns strongly suggested that these subsets appeared sequentially in the genome of C. sinensis. Members of recently expanding subset showed the lowest level of divergence in their L TR and reverse transcriptase gene sequences. They were also shown to be highly polymorphic among individual genomes of the trematode. The CsRn1 element exhibited a preference for repetitive, agenic chromosomal regions in terms of selecting integration targets. Our results suggested that CsRn1 might induce a considerable degree of intergenomic variation and, thereby, have influenced the evolution of the C. sinensis genome.

Investigation of functional roles of transcription termination factor-1 (TTF-I) in HIV-1 replication

  • Park, Seong-Hyun;Yu, Kyung-Lee;Jung, Yu-Mi;Lee, Seong-Deok;Kim, Min-Jeong;You, Ji-Chang
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.338-343
    • /
    • 2018
  • Transcription termination factor-1 (TTF-I) is an RNA polymerase 1-mediated transcription terminator and consisting of a C-terminal DNA-binding domain, central domain, and N-terminal regulatory domain. This protein binds to a so-called 'Sal box' composed of an 11-base pair motif. The interaction of TTF-I with the 'Sal box' is important for many cellular events, including efficient termination of RNA polymerase-1 activity involved in pre-rRNA synthesis and formation of a chromatin loop. To further understand the role of TTF-I in human immunodeficiency virus (HIV)-I virus production, we generated various TTF-I mutant forms. Through a series of studies of the over-expression of TTF-I and its derivatives along with co-transfection with either proviral DNA or HIV-I long terminal repeat (LTR)-driven reporter vectors, we determined that wild-type TTF-I downregulates HIV-I LTR activity and virus production, while the TTF-I Myb-like domain alone upregulated virus production, suggesting that wild-type TTF-I inhibits virus production and trans-activation of the LTR sequence; the Myb-like domain of TTF-I increased virus production and trans-activated LTR activity.

Characterization of Prototype Foamy Virus Infectivity in Transportin 3 Knockdown Human 293t Cell Line

  • Hamid, Faysal Bin;Kim, Jinsun;Shin, Cha-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.380-387
    • /
    • 2017
  • The foamy viruses are currently considered essential for development as vectors for gene delivery. Previous studies demonstrated that prototype foamy virus (PFV) can infect and replicate prevalently in a variety of cell types for its exclusive replication strategy. However, the virus-host interaction, especially PFV-transportin3 (TNPO3), is still poorly understood. In our investigation of the role of TNPO3 in PFV infection, we found lower virus production in TNPO3 knockdown (KD) cells compared with wild-type 293T cells. PCR analysis revealed that viral DNAs were mostly altered to circular forms: both 1-long terminal repeat (1-LTR) and 2-LTR in TNPO3 KD cells. We therefore suggest that TNPO3 is required for successful PFV replication, at least at/after the nuclear entry step of viral DNA. These findings highlight the obscure mysteries of PFV-host interaction and the requirement of TNPO3 for productive infection of PFV in 293T cells.

Establishment of Transgenic Mouse with the E6 and E7 Genes of Human Papillomavirus Type 16 (인간 Papillomavirus의 E6, E7 유전자를 이용한 Transgenic Mouse의 확립)

  • Hwang, Yong-Il;Lee, Seung-Cheol;Kim, Hyun-Su
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.115-120
    • /
    • 1996
  • Human papillomavirus (HPV), especially type 16 and 18, has been closely associated with carcinomas and uterine cevical cancer, recently. From in vitro assays, E6 and E7 genes of HPV16 are closely linked with transformation of cell lines of rodent fibroplasts. However, the transforming activity of E6 and E7 genes of HPV type 16 in vivo has not been fully elucidated. For explaining this mechanism, we prepared a expression system with the promoter of mouse mammary tumorvirus long terminal repeat and E6E7's open reading frames. This expression system was introduced in rodent cell lines, No. 7, 3Y1 and shown normal transforming abilities. And, we produced transgenic mice with E6, E7 expression system. These transgenic mice were confirmed from Southern blot analysis. One male of them was observed enlargement of the testis after 5 months postdelivery.

  • PDF

Long Terminal Repeat of an Endogenous Retrovirus HERV-K Family from Human Liver and Kidney cDNA

  • Kim, Heui-Soo;Choi, Joo-Young;Lee, Joo-Mi;Jeon, Seung-Heui;Lee, Young-Choon;Lee, Won-Ho;Jang, Kyung-Lib
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.45-49
    • /
    • 2000
  • Long terminal repeat (LTR) of human endogenous retrovirus K family (HERV-K) has been found to be coexpressed with sequences of closely located genes. We examined the transcribed HERV-K LTR elements in human liver and kidney tissues. Using the cDNA synthesized from mRNA of human liver and kidney, we performed PCR amplification and identified six HERV-K LTR elements. Those LTR elements showed a high degree of sequence similarity (93.3∼96.6%) with human-specific LTR. A phylogenetic tree obtained by the neighbor-joining method revealed that HERV-K LTR elements (Liv-1, 2, 3 and Kid-1, 2, 3) were belonged to group I. Our data suggests that HERV-K LTR elements are active on human liver and kidney tissues and may represent a source of genetic variation connected to human disease.

  • PDF

Promoter Activity of the Long Terminal Repeats of Porcine Endogenous Retroviruses of the Korean Domestic Pig

  • Ha, Hong-Seok;Huh, Jae-Won;Kim, Dae-Soo;Kang, Dong-Woo;Cho, Byung-Wook;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.148-151
    • /
    • 2007
  • Porcine endogenous retroviruses (PERVs) in the pig genome represent a potential risk of infection in pig-to-human transplantation and are transmitted vertically. The solitary long terminal repeat (LTR) elements of the PERVs affect the replication properties of the individual viruses via their repeat sequences and by encoding a set of specific transcription factors. We examined the promoter activities of solitary LTR elements belonging to the PERV-A and -B families of the Korean domestic pig (KDP) using luciferase reporters. Three of the LTR structures (of PERV-A5-KDP, PERV-A7-KDP, PERV-A8-KDP) had different promoter activities in human HCT116 cells and monkey Cos7 cells, and potential negatively and positively acting regions affecting transcription were identified by deletion analysis. These data suggest that specific sequences in the U3 region of a given LTR element can affect the activities of promoter or enhancer elements in the PERV.

Identification of hRad21-Binding Sites in Human Chromosome

  • Chin Chur;Chung Byung-Seon
    • Genomics & Informatics
    • /
    • v.4 no.1
    • /
    • pp.11-15
    • /
    • 2006
  • The aim of this study is to identify hRad21-binding sites in human chromosome, the core component of cohesin complex that held sister chromatids together. After chromatin immunoprecipitation with an hRad21 antibody, it was cloned the recovered DNA and sequenced 30 independent clones. Among them, 20 clones (67%) contained repetitive elements including short interspersed transposable elements (SINE or Alu elements), long terminal repeat (LTR) and long interspersed transposable elements (LINE), fourteen of these twenty (70%) repeats clones had Alu elements, which could be categorized as the old and the young Alu Subfamily, eleven of the fourteen (73%) Alu elements belonged to the old Alu Subfamily, and only three Alu elements were categorized as young Alu subfamily. There is no CpG island within these selected clones. Association of hRad21 with Alu was confirmed by chromatin immunoprecipitation-PCR using conserved Alu primers. The primers were designed in the flanking region of Alu, and the specific Alu element was shown in the selected clone. From these experiments, it was demonstrated that hRad21 could bind to SINE, LTRs, and LINE as well as Alu.

Characterization of the Bovine Endogenous Retrovirus β3 Genome

  • Xiao, Rui;Kim, Juhyun;Choi, Hojun;Park, Kwangha;Lee, Hoontaek;Park, Chankyu
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.142-147
    • /
    • 2008
  • We recently used degenerate PCR and locus-specific PCR methods to identify the endogenous retroviruses (ERV) in the bovine genome. Using the ovine ERV classification system, the bovine ERVs (BERVs) could be classified into four families. Here, we searched the most recently released bovine genome database with the partial nucleotide sequence of the pro/pol region of the BERV ${\beta}3$ family. This allowed us to obtain and analyze the complete genome of BERV ${\beta}3$. The BERV ${\beta}3$ genome is 7666 nucleotides long and has the typical retroviral organization, namely, 5'-long terminal repeat (LTR)-gag-pro-pol-env-LTR-3'. The deduced open reading frames for gag, pro, pol and env of BERV ${\beta}3$ en- code 507, 271, 879 and 603 amino acids, respectively. BERV ${\beta}3$ showed little amino acid similarity to other betaretroviruses. Phylogenetic analysis showed that it clusters with HERV-K. This is the first report describing the genetic structure and sequence of an entire BERV.