• Title/Summary/Keyword: 1-axis test-bench

Search Result 5, Processing Time 0.017 seconds

Manufacturing Test-bench for Developing Nanopositioner (나노포지셔너 개발을 위한 테스트벤치 제작)

  • Kwon, Ji Yong;Park, Geun Je;Ryu, Won Jin;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.593-599
    • /
    • 2013
  • In this study, a test-bench for developing and verifying a 1- or 2-axis nanopositioner was manufactured. Using this test-bench, adesigned and manufactured flexure stage based on an analysis can configure nanopositioning systems. A breadboard and fixture were fabricated to be equipped with various types of mechanisms and sizes of stages. The test-bench has linear encoders for calibrating sensors and verifying the orthogonality and parasitic motion of 2-axis nested-type nanopositioners. The controller was developed using LabVIEW and a TI microcontroller. A case study that exemplified the test bench for developing a nanopositioner by senior undergraduate students is shown.

Application of SIMC Based Quad-rotor Cascade Control by Using 1-axis Attitude Control Test-bench (1축 자세제어실험 장비를 이용한 SIMC 기반 쿼드로터 Cascade 제어기 적용에 관한 연구)

  • Choi, Yun-sung;You, Young-jin;Jeong, Jin-seok;Kang, Beom-soo
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.473-483
    • /
    • 2015
  • This paper reports the single-input-single-output cascade control by using 1-axis attitude control test-bench for quad-rotor UAV. The test-bench was designed as a see-saw shape using 2 motors and propellers, and to enable changing the center of gravity with the center of gyration using ballast. The experiment was carried out by constructing a PID-PID controller having a cascade structure with the test-bench. The SIMC based PID gain tuning process, which makes PID gain tuning easy, was grafted to cascade control. To graft SIMC method, the system parameter estimation result was conducted with second order time delay model by using Matlab-Simulink. Gain tuning was conducted by simulating with estimated system parameter. In this paper, the conventional application of SIMC was conducted and improved application was proposed for improving stability at tuning process.

Development of Bench Tester for Designing the Passive Anti-Rolling Tanks (수동형 감요수조 설계를 위한 벤치테스터 개발)

  • Lew, Jae-Moon;Kim, Hyochul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.452-459
    • /
    • 2015
  • It is important to use bench test results in the design process of anti-rolling tanks. Traditional bench tester is usually designed to perform only roll motions about a fixed axis and relatively small so that the viscous effects may not be neglected. Novel bench tester which could adjust the motion center to realize the coupled motion of sway and roll has been devised and manufactured therefore, large scaled bench tester could be utilized for designing the passive anti-rolling tanks. The time history of the reference signal from the rotation sensor of the bench tester have been recorded and processed to determine the phase angle to derive the Response Amplitude Operator(RAO) of the stabilized ship. The breadth of ART tank model should be large up to 2 m to diminish viscous scale effect and the vertical position of the tank can be varied with the ship's center of motion. The periods and the amplitude of roll motion can be varied from 1.5 sec to 5 sec and up to ±20°, respectively. The components of the tester was expressed in three dimensional digital mockup (DMU) and assembled together in the CAD space. The final configuration of the bench tester has been determined by confirming the smooth operation of the moving parts without interference through the animation in CAD space. New analytic logic are introduced for the determination of hydrodynamic moment and phase difference due to fluid motion in ART and verified through the test. The developed bench tester is believed to be effective and accurate for the verification of stabilization effect of ART taking into the consideration of the sway effect in the design stage.

Measurement and Correction of PCB Alignment Error for Screen Printer Using Machine Vision (1) (머신비전을 이용한 PCB 스크린인쇄기의 정렬오차측정 및 위치보정 (1))

  • 신동원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.88-95
    • /
    • 2003
  • This paper presents the measurement and correction method of PCB alignment errors for PCB screen printer. Electronic equipment is getting smaller and yet must satisfy high performance standard. Therefore, there is a great demand for PCB with high density. However conventional PCB screen printer doesn't have enough accuracy to accommodate the demand fur high-resolution circuit pattern and high-density mounting capacity of electronic chips. It is because the alignment errors of PCB occur when it is loaded to the screen printer. Therefore, this study focuses on the development of the system which is able to measure and correct alignment errors with high-accuracy. An automatic optical inspection part measures the PCB alignment errors using machine vision, and the high-accuracy 3-axis stage makes correction for these errors. This system used two CCD cameras to get images of two fiducial marks of PCB. The geometrical relationship between PCB, cameras, and xy$\theta$ stage is derived, and analytical equations for alignment errors are also obtained. The unknown parameters including camera declining angles and etc. can be obtained by initialization process. Finally, the proposed algorithm is verified by experiments by using test bench.

A Study on the Design and Validation of Switching Mechanism in Hot Bench System-Switch Mechanism Computer Environment (HBS-SWMC 환경에서의 전환장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup;Cho, In-Je;Ahn, Jong-Min;Lee, Dong-Kyu;Park, Sang-Seon;Park, Sung-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.711-719
    • /
    • 2008
  • Although non-real time simulation and pilot based evaluations are available for the development of flight control computer prior to real flight tests, there are still many risky factors. The control law designed for prototype aircraft often leads to degraded performance from the initial design objectives, therefore, the proper evaluation methods should be applied such that flight control law designed can be verified in real flight environment. The one proposed in this paper is IFS(In-Flight Simulator). Currently, this system has been implemented into the F-18 HARV(High Angle of Attack Research Vehicle), SU-27 and F-16 VISTA(Variable stability. In flight Simulation Test Aircraft) programs. This paper addresses the concept of switching mechanism for FLCC(Flight Control Computer)-SWMC(Switching Mechanism Computer) using 1553B communication based on flight control law of advanced supersonic trainer. And, the fader logic of TFS(Transient Free Switch) and stand-by mode of reset '0' type are designed to reduce abrupt transient and minimize the integrator effect in pitch axis control law. It hans been turned out from the pilot evaluation in real time that the aircraft is controllable during the inter-conversion process through the flight control computer, and level 1 handling qualities are guaranteed. In addition, flight safety is maintained with an acceptable transient response during aggressive maneuver performed in severe flight conditions.