• Title/Summary/Keyword: 1-Octanethiol

Search Result 12, Processing Time 0.015 seconds

Microcantilever biosensor: sensing platform, surface characterization and multiscale modeling

  • Chen, Chuin-Shan;Kuan, Shu;Chang, Tzu-Hsuan;Chou, Chia-Ching;Chang, Shu-Wei;Huang, Long-Sun
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.17-37
    • /
    • 2011
  • The microcantilever (MCL) sensor is one of the most promising platforms for next-generation label-free biosensing applications. It outperforms conventional label-free detection methods in terms of portability and parallelization. In this paper, an overview of recent advances in our understanding of the coupling between biomolecular interactions and MCL responses is given. A dual compact optical MCL sensing platform was built to enable biosensing experiments both in gas-phase environments and in solutions. The thermal bimorph effect was found to be an effective nanomanipulator for the MCL platform calibration. The study of the alkanethiol self-assembly monolayer (SAM) chain length effect revealed that 1-octanethiol ($C_8H_{17}SH$) induced a larger deflection than that from 1-dodecanethiol ($C_{12}H_{25}SH$) in solutions. Using the clinically relevant biomarker C-reactive protein (CRP), we revealed that the analytical sensitivity of the MCL reached a diagnostic level of $1{\sim}500{\mu}g/ml$ within a 7% coefficient of variation. Using grazing incident x-ray diffractometer (GIXRD) analysis, we found that the gold surface was dominated by the (111) crystalline plane. Moreover, using X-ray photoelectron spectroscopy (XPS) analysis, we confirmed that the Au-S covalent bonds occurred in SAM adsorption whereas CRP molecular bindings occurred in protein analysis. First principles density functional theory (DFT) simulations were also used to examine biomolecular adsorption mechanisms. Multiscale modeling was then developed to connect the interactions at the molecular level with the MCL mechanical response. The alkanethiol SAM chain length effect in air was successfully predicted using the multiscale scheme.

STM Tip Catalyzed Adsorption of Thiol Molecules and Functional Group-Selective Adsorption of a Bi-Functional Molecule Using This Catalysis

  • Min, Yeong-Hwan;Jeong, Sun-Jeong;Yun, Yeong-Sang;Park, Eun-Hui;Kim, Do-Hwan;Kim, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.197-197
    • /
    • 2011
  • In this study, in contrast with cases in which Scanning Tunneling Microscopy (STM) tip-induced reactions were instigated by the tunneling electrons, the local electric field, or the mechanical force between a tip and a surface, we found that the tungsten oxide (WO3) covered tungsten (W) tip of a STM acted as a chemical catalyst for the S-H dissociative adsorption of phenylthiol and 1-octanethiol onto a Ge(100) surface. By varying the distance between the tip and the surface, the degree of the tip-catalyzed adsorption could be controlled. We have found that the thiol head-group is the critical functional group for this catalysis and the catalytic material is the WO3 layer of the tip. After removing the WO3 layer by field emission treatment, the catalytic activity of the tip has been lost. 3-mercapto isobutyric acid is a chiral bi-functional molecule which has two functional groups, carboxylic acid group and thiol group, at each end. 3-Mercapto Isobutyric Acid adsorbs at Ge(100) surface only through carboxylic acid group at room temperature and this adsorption was enhanced by the tunneling electrons between a STM tip and the surface. Using this enhancement, it is possible to make thiol group-terminated surface where we desire. On the other hand, surprisingly, the WO3 covered W tip of STM was found to act as a chemical catalyst to catalyze the adsorption of 3-mercapto isobutyric acid through thiol group at Ge(100) surface. Using this catalysis, it is possible to make carboxylic acid group-terminated surface where we want. This functional group-selective adsorption of bi-functional molecule using the catalysis may be used in positive lithographic methods to produce semiconductor substrate which is terminated by desired functional groups.

  • PDF