• Title/Summary/Keyword: 1-Hexene

Search Result 46, Processing Time 0.019 seconds

Luminescence Studies of N-Methyllutidone, an Unusually High Triplet Energy Sensitizer (N-메틸루티돈의 루미네센스에 관한 연구)

  • Sang Chul Shim;Myung Ho Hyun;Kuy Ho Chae
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.45-51
    • /
    • 1978
  • The luminescence of N-methyllutidone is studied in ethanol matrix at $77^{\circ}C$K. No fluorescence is observed but a strong phosphorescence with the quantum yield of 0.1 and the lifetime of 0.2 sec is recorded. An unusually high triplet energy of 85.1 kcal/mole is determined for the compound from the O-O band of phosphorescence. The cis ${\leftrightarrow}$ trans photoisomerization of high triplet energy olefins such as 2-hexene and trans-1,4-dichlorobutene-2 is efficiently sensitized by N-methyllutidone substantiating the high triplet energy of the compound. The negative polarization of O-O band reveals the emitting triplet state to be $({\pi},{\pi}^*)^3$ state. Alkaline metal salts such as lithium chloride enhances the phosphorescence intensity through cation-N-methyllutidone coordination widening the gap between $({\pi},{\pi}^*)^3$and $(n,{\pi}^*)^3$ states.

  • PDF

The Effect of Comonomer Type and Content on the Properties of Ziegler-Natta Bimodal High-Density Polyethylene (공단량체의 종류 및 조성이 지글러-나타 중합된 이중 분자량 분포 고밀도 폴리에틸렌의 물성에 미치는 영향)

  • Meng, Weijuan;Li, Hongbo;Li, Jianwei;Chen, Biaohua
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.673-679
    • /
    • 2011
  • Bimodal high-density polyethylenes with different comonomer type and content were synthesized by polymerization of ethylene using Ziegler-Natta catalyst. Their structure and properties were studied using GPC, NMR, DSC and tensile test. It was found that ethylene/1-hexene copolymer exhibits higher tensile strength and elongation at break than that of ethylene/1-butylene copolymer with similar comonomer content. The molecular weight decreases as the comonomer content of the polymer increases. Short chain branching affects the crystallinity and thus the morphology and consequently the mechanical properties of the corresponding bimodal high-density polyethylenes. After SSA treated, the multiple endothermic peaks were observed. Multiple endothermic peaks are mainly attributed to the heterogeneity of ethylene sequence length and lamellar thickness. The difference of broadness index indicates that SCB distribution of polyethylene containing higher comonomer content has improved uniformity.

Preparation of (n-BuCp)2ZrCl2 Catalyst Supported on SiO2/MgCl2 Binary Support and its Ethylene-1-hexene Copolymerization (SiO2/MgCl2 이원 담체에 담지된 (n-BuCp)2ZrCl2 합성과 에틸렌-1-헥센 공중합)

  • Carino, Ann Charise;Park, Sang Jun;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.29 no.4
    • /
    • pp.461-467
    • /
    • 2018
  • In this study, $(n-BuCp)_2ZrCl_2$, was supported on $SiO_2/MgCl_2$ binary support. Before supporting the catalyst, the $SiO_2/MgCl_2$ binary support was surface treated with three different alkyl aluminum compound, namely trimethylaluminum, triethylaluminum, and ethylaluminum sesquichloride. The synthesized surface-treated $SiO_2/MgCl_2$ supported metallocene catalysts were used for the copolymerization of ethylene and 1-hexene. Their catalytic properties and performances were analyzed through BET, XPS analysis, ICP-AES analysis, and FE-SEM. While the resulting copolymers were analyzed through DSC analysis, GPC analysis, 13C-NMR analysis, and FE-SEM. The analysis of synthesized surface-treated $SiO_2/MgCl_2$ supported metallocene catalysts showed that the Zr content of these catalysts is relatively lower compared to that of the catalyst supported on $SiO_2$. This could be attributed to the reduction in the surface area of $SiO_2$ due to the presence of recrystallized $MgCl_2$ and alkyl aluminum. Furthermore, they exhibited a better copolymerization activity compared to that of $SiO_2$ supported catalyst, particularly the EASC-surface treated binary support, which has the highest activity of 1.9 kg PE/($mmol-Zr^*hr$) because EASC acts as a strong Lewis acid. It could also be observed that the larger the ligand of alkyl aluminum used, the rougher the particle surface of the resulting polymer.

The Crystal and Molecular Structure of Z-3-P-Tolylthio-4-Nitro-3-Hexene (Z-3-파라-톨릴치오-4-니트로-3-헥센의 결정 및 분자구조)

  • An, Jung Tae;Gene B. Carpenter
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.130-135
    • /
    • 1990
  • The title compound (C13H17NO2S) is monoclinic, space group P21/a, with a = 13.756 (3), b = 9.310(4), c = 21.305(3) $\AA$, $\beta$ = 95.0。, Z = 8, V = 2718.11 $\AA$3, Dc = 1.23$g·{\cdot}cm-3$, (Mo k$\alpha$) = 0.71069$\AA$,$\mu$ = 2.18 cm-1, F(000) = 1071.86, T = 298, R = 0.085 for 2935 unique observed reflections with I >2.0$\sigma$(I). The structure was solved by direct methods. The C-H bond lengths and the methyl groups are fixed and refined as their ideal geometry by allowing to ride on the parent atoms. Both molecules A and B have almost same structures except for two terminal ethyl groups. The ethylene-like skeleton including the nitro group in one molecule is nearly perpendicular to the plane of the methylbenzene group and two ethyl groups form a cis-type structure which has the dfferent orientations between two molecules; in the molecule A, two terminal methyl groups being the opposite directional arrangement against the plane of its skeleton, while in the B, with the same directional structure from its plane. The molecules in the crystal are packed together by non-bonded van der Waals forces.

  • PDF

Vinyl Addition Polymerization Behavior of Poly(5-hexyl-2-norbornene-co-5-methylester-2-norbornene)s Using Cationic ${\eta}^3$-Allyl Palladium Catalyst (양이온성 ${\eta}^3$-알릴 팔라듐 촉매를 사용한 폴리(5-헥실-2-노보넨-co-5-메틸에스터-2-노보넨)의 비닐 부가 중합 거동)

  • 안재철;박기홍
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.245-252
    • /
    • 2004
  • We synthesized the vinyl addition-type polynorbomene copolymers using two monomers [5-hexyl-2-norbornene (HNB) and 5-methyleste-2-norbornene(MES-NB)] by means of a cationic ${\eta}^3$-allyl palladium catalyst system{[(${\eta}^3$-allyl)palladium(tricyclohexylphosphine) trifluoroacetate] and [lithium tetrakis(pentafluorophenyl) borate ${\cdot}$2.5 etherate]}. The molecular weights and yields of copolynorbomenes polymerized in various conditions were measured to investigate an optimum polymerization conditions to obtain highly ester-functionalized polynorbomenes. As a Pd catalyst content increased, the molecular weights (Mw) of polymers decreased while polymer yields increased. Also, as a Li cocatalyst content increased, the Mw’s and yields of polymers increased at the same time. The Mw’s of copolymers were also controlled by chain transfer agents such as 1-hexone, 1-octene and 1-decene, and we found that longer 1-decene and 1-octene were more efficient to reduce the Mw’s of polynorbornenes than 1-hexene. On the other hand, the content of chain transfer agents did not give influence significantly on polymer yields. From the $^1$H-NMR and GPC analysis of HNB/MES-NB(feed ratio of 40/60 mol%) copolymer, we found that this copolymer had an about 25 mol% of ester portion and a high molecular weight of 270,000.

Copolymerization of Ethylene and Cycloolefin with Metallocene Catalyst : III. Effect of ${\alpha}$-Olefin Addition (메탈로센 촉매를 이용한 에틸렌과 시클로올레핀의 공중합 : III. ${\alpha}$-올레핀 첨가의 영향)

  • Lee, Dong-Ho;Lee, Jo-Hoon;Kim, Hyun-Joon;Kim, Woo-Sik;Min, Kyung-Eun;Park, Lee-Soon;Seo, Kwan-Ho;Kang, Inn-Kyu
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.468-475
    • /
    • 2001
  • For copolymerization of ethylene and norbornene initiated by various metallocene catalysts such as $rac-Et(Ind)_2ZrCl_2,\;rac-Me_2Si(Ind)_2ZrCl_2,\;rac-Me_2Si(Cp)_2ZrCl_2,\;and\;(n-BuCp)_2ZrCl_2$ with modified methylaluminoxane(MMAO) cocatalyst, the ${\alpha}$-olefins such as 1-hexene(H), 1-octene and 1-decene were added as a 3rd monomer. In this situation, the effects of the polymerization condition, the catalyst structure as well as the structure and the amount of added ${\alpha}$-olefin on the catalyst activity as well as the properties and structure of polymer were examined. As results, it was found that the catalyst activity and thermal property of polymer depended on not only catalyst structure but also ${\alpha}$-olefin structure. For $rac-Et(Ind)_2ZrCl_2/MMAO$ catalyst system, it was possible to get high activity and controllable $T_g$ of polymer. Among ${\alpha}$-olefins, H as a 3rd monomer exhibited the maximum enhancement in catalyst activity.

  • PDF