• Title/Summary/Keyword: 1-D model

Search Result 7,109, Processing Time 0.042 seconds

Performance Analysis of the Industrial Inkjet Printing Head Using 1D Lumped Model (1 차원 Lumped 모델을 이용한 산업용 잉크젯 프린팅 헤드 토출 특성 해석)

  • Sim, Won-Chul;Kim, Young-Jae;Park, Chang-Sung;Yoo, Young-Seuck;Joung, Jae-Woo;Oh, Yong-Soo;Park, Sung-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.101-107
    • /
    • 2007
  • Jettability analysis using one-dimensional(1D) lumped parameter model has been investigated to design the industrial inkjet head with proper drop velocity and drop volume. By simplifying the inkjet head system into an equivalent electrical circuit, lumped model has been developed. Performance of the lumped model is verified by the comparison between measured results of droplet velocity and ejection volume and predicted value. Also, the jetting performance of an inkjet head is characterized by varying the design parameter and driving condition. As a result, simulation results shows good agreement with the experimentally measured value. The developed lumped model enables to easily understand the effect of dimension change and predict the jetting performance.

Virtual Models for 3D Printing

  • Haeseong Jee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • surface texture denotes set of tiny repetitive geometric features on an object surface. 3D Printing can readily create a surface of controlled macro-textures of high geometric complexity. Designing surface textures for 3D Printing, however, is difficult due to complex macro-structure of the tiny texture geometry since it needs to be compatible with the non-traditioal manufacturing method. In this paper we propose a visual simulation technique involving development of a virtual model-an intermediate geometric model-of the surface texture design prior to fabricating the physical model. Careful examination of the virtual model before the actual fabrication can help minimize unwanted design iterations. The proposed technique demonstrated visualization capability by comparing the virtual model with the physical model for several test cases.

  • PDF

A Lateral Behavior Characteristics of Group Concrete Pile by Model Tests (모형실험에 의한 무리 콘크리트 말뚝의 수평거동 특성)

  • Kwon, Oh-Kyun;Park, Jong-Un;Kim, Jin-Bok;Lim, Dong-Hyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.57-64
    • /
    • 2012
  • The lateral behavior characteristics of concrete group pile under the lateral load were examined by the laboratory model tests in this study. Piles were socketed 1D(D : pile diameter) in the concrete block, and model tests were executed on $2{\times}3$ group piles, of which the length were 11D, 15D and 20D. All results of loading tests under each condition was presented by the lateral load-displacement curves, and the displacements in the ground under the lateral loads were measured. As a results of model tests, as the ratio of pile length/diameter(L/D) was decreased, the yielding load and the lateral displacement at that load were increased. The yielding load was evaluated as the load at lateral displacement of 15 mm. The yielding loads at the pile length of 11D, 15D and 20D were 11.7, 6.2kN and 3.4kN. The lateral displacements of pile in the ground under each condition were measured linearly and the failure occurred at the location where the piles were socketed in concrete block.

The Measurement and Consideration of Path Loss in Domestic Terrain Environments for IMT-2000 (국내지형환경에서의 IMT-2000주파수 대 경로손실 측정 및 고찰)

  • 이상수;이동진;최학근;김준철;박원진
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.547-552
    • /
    • 2002
  • In this paper, the path loss in domestic terrain environments for IMT-2000 are measured and considered. Domestic terrain environments are classified and received power is measured at 1.9201GHz. In addition, the Path loss is calculated with consideration of the radiation pattern of antennas based on the results of measurement. For the consideration of path loss in domestic terrain environments, each path loss are fitted with the same slope of a reference model as "COST-231 HATA Urban Model", and then both are compared. As a result, all of the path loss in domestic terrain environments are lower than the path loss of a reference model as "COST-231 HATA Urban Model". We found that a difference of path loss in domestic terrain environments and a reference model is 5dB in urban, 8dB in sparse urban, 12dll in dense suburban, 13dB in suburban, 19dB in sparse suburban, and 29dB in road.

3-D Model-based UAV Path Generation for Visual Inspection of the Dome-type Nuclear Containment Building (UAV를 이용한 돔형 원자력 격납건물 외관조사를 위한 3차원 모델기반 비행 좌표 생성 방법)

  • Kim, Bong-Geun
    • Journal of KIBIM
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • This paper provides a method for generating flight path of Unmanned Aerial Vehicle (UAV) that is intended to be used in visual inspection of dome-type nuclear containment building. The method basically employs 3-D model to extract accurate location coordinates. Two basic route patterns that provide guide lines in defining moving locations were defined for each side wall and dome section of the containment. The route patterns support sequential capturing of images as well. In addition, several simple equations and an algorithm for calculation of the moving location on the route were developed on the basis of 3-D geometric characteristics of the containment building. A prototype computer program has been implemented to validate the proposed method, and a case study shows the method can visualize covering area in 3-D model as well.

3D Model Retrieval Based on Orthogonal Projections

  • Wei, Liu;Yuanjun, He
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.117-123
    • /
    • 2006
  • Recently with the development of 3D modeling and digitizing tools, more and more models have been created, which leads to the necessity of the technique of 3D mode retrieval system. In this paper we investigate a new method for 3D model retrieval based on orthogonal projections. We assume that 3D models are composed of trigonal meshes. Algorithms process first by a normalization step in which the 3D models are transformed into the canonical coordinates. Then each model is orthogonally projected onto six surfaces of the projected cube which contains it. A following step is feature extraction of the projected images which is done by Moment Invariants and Polar Radius Fourier Transform. The feature vector of each 3D model is composed of the features extracted from projected images with different weights. Our System validates that this means can distinguish 3D models effectively. Experiments show that our method performs quit well.

Draft Prediction of Bulldozer Blade by Model Tests (모델 테스트에 의한 Bulldozer Blade의 견인력(牽引力) 예측(豫測))

  • Lee, K.S.;Roh, S.C.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.209-219
    • /
    • 1993
  • A series of soil bin experiment was carried out on sand to investigate if true model theory is applicable to blade-soil system and finally to find mathematical relationship between the dimensionless terms which contain the blade-soil parameters. The following conclusions were derived from the study. 1. It was proved that the draft of the prototype blade can be predicted without distortion by those of model blades with the length scale of 1.2, 2 and 2.4. 2. For the sand, bulk density was found to be a good measure of soil physical properties which are pertinent to predict the draft of the blade-soil system. 3. The mathematical relationship between $D/{\gamma}W$ and d/W, ${\beta}$, and $V^2/Wg$ are as follows ; $$\frac{D}{{\gamma}W^3}=124.98[\frac{d}{W}]^2+7.16[\frac{d}{W}]+0.43 \\ \frac{D}{{\gamma}W^3}=-0.00099{\beta}^2+0.13{\beta}-2.01 \\ \frac{D}{{\gamma}W^3}=0.041[\frac{V^2}{Wg}]^2+0.08[\frac{V^2}{Wg}]+1.3$$

  • PDF

Efficient 3D Model based Face Representation and Recognition Algorithmusing Pixel-to-Vertex Map (PVM)

  • Jeong, Kang-Hun;Moon, Hyeon-Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.228-246
    • /
    • 2011
  • A 3D model based approach for a face representation and recognition algorithm has been investigated as a robust solution for pose and illumination variation. Since a generative 3D face model consists of a large number of vertices, a 3D model based face recognition system is generally inefficient in computation time and complexity. In this paper, we propose a novel 3D face representation algorithm based on a pixel to vertex map (PVM) to optimize the number of vertices. We explore shape and texture coefficient vectors of the 3D model by fitting it to an input face using inverse compositional image alignment (ICIA) to evaluate face recognition performance. Experimental results show that the proposed face representation and recognition algorithm is efficient in computation time while maintaining reasonable accuracy.

3D Model Retrieval Using Geometric Information (기하학 정보를 이용한 3차원 모델 검색)

  • Lee Kee-Ho;Kim Nac-Woo;Kim Tae-Yong;Choi Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.1007-1016
    • /
    • 2005
  • This paper presents a feature extraction method for shape based retrieval of 3D models. Since the feature descriptor of 3D model should be invariant to translation, rotation and scaling, it is necessary to preprocess the 3D models to represent them in a canonical coordinate system. We use the PCA(Principal Component Analysis) method to preprocess the 3D models. Also, we apply that to make a MBR(Minimum Boundary Rectangle) and a circumsphere. The proposed algorithm is as follows. We generate a circumsphere around 3D models, where radius equals 1(r=1) and locate each model in the center of the circumsphere. We produce the concentric spheres with a different radius($r_i=i/n,\;i=1,2,{\ldots},n$). After looking for meshes intersected with the concentric spheres, we compute the curvature of the meshes. We use these curvatures as the model descriptor. Experimental results numerically show the performance improvement of proposed algorithm from min. 0.1 to max. 0.6 in comparison with conventional methods by ANMRR, although our method uses .relatively small bins. This paper uses $R{^*}-tree$ as the indexing.