• Title/Summary/Keyword: 1-D filter

Search Result 1,296, Processing Time 0.026 seconds

Microstrip Resonator for Simultaneous Application to Filter and Antenna (여파기와 안테나로 동시 적용이 가능한 마이크로스트립 공진기)

  • Sung, Young-Je;Kim, Duck-Hwan;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.475-485
    • /
    • 2010
  • This paper proposes a novel concept for a microstrip resonator that can function as a filter and as an antenna at the same time. The proposed structure consists of an outer ring, an open loop-type inner ring, a circular patch, and three ports. The frequencies where the proposed structure works as a filter and as an antenna, respectively, are determined primarily by the radius of the inner ring and the circular patch. The measured results show that, when the microstrip resonator operates as a filtering device, this filter has about 15.1 % bandwidth at the center frequency of 0.63 GHz and a minimum insertion loss of 1.5 dB within passband. There are three transmission zeros at 0.52 GHz, 1.14 GHz, and 2.22 GHz. In the upper stopband, cross coupling - taking place at the stub of the outer ring - and the open loop-type inner ring produce one transmission zero each. The circular patch generates the dual-mode property of the filter and another transmission zero, whose location can be easily adjusted by altering the size of the circular patch. The proposed structure works as an antenna at 2.7 GHz, showing a gain of 3.8 dBi. Compared to a conventional patch antenna, the proposed structure has a similar antenna gain. At the resonant frequencies of the filter and the antenna, high isolation(less than -25 dB) between the filter port and the antenna port can be obtained.

An Interpolation Filter Design for the Full Digital Audio Amplifier (완전 디지털 오디오 증폭기를 위한 보간 필터 설계)

  • Heo, Seo-Weon;Sung, Hyuk-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.253-258
    • /
    • 2012
  • A computationally efficient interpolation filter with a low-distortion performance is a key component to utilize the naturally-sampled pulse width modulation (NPWM) in a digital domain. To realize the efficient interpolation filter, we propose a novel design based on the recently-proposed modified Farrow filter. The proposed filter shows a better pass-band distortion performance maintaining similar degree of complexity compared with the conventional Lagrange interpolation filter. We achieve the maximum distortion deviation of 10-3 dB to 20-kHz audible frequency range and distortion reduction of 1/6 times compared with the Lagrange interpolation filter.

Highly Miniaturized and Performed UWB Bandpass Filter Embedded into PCB with SrTiO3 Composite Layer

  • Cheon, Seong-Jong;Park, Jun-Hwan;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.582-588
    • /
    • 2012
  • In this paper, a highly miniaturized and performed UWB bandpass filter has been newly designed and implemented by embedding all the passive elements into a multi-layered PCB substrate with high dielectric $SrTiO_3$ composite film for 3.1 - 4.75 GHz compact UWB system applications. The high dielectric composite film was utilized to increase the capacitance densities and quality factors of capacitors embedded into the PCB. In order to reduce the size of the filter and avoid parasitic EM coupling between the embedded filter circuit elements, it was designed by using a $3^{rd}$ order Chebyshev circuit topology and a capacitive coupled transformation technology. Independent transmission zeros were also applied for improving the attenuation of the filter at the desired stopbands. The measured insertion and return losses in the passband were better than 1.68 and 12 dB, with a minimum value of 0.78 dB. The transmission zeros of the measured response were occurred at 2.2 and 5.15 GHz resulting in excellent suppressions of 31 and 20 dB at WLAN bands of 2.4 and 5.15 GHz, respectively. The size of the fabricated bandpass filter was $2.9{\times}2.8{\times}0.55(H)mm^3$.

Dual-Wideband Bandpass Filter Using Distributed Composite Right/Left-Handed Transmission Line Quad-Mode Resonators (분산 CRLH 전송선로 4중 모드 공진기를 이용한 이중-광대역 대역통과 여파기 설계)

  • Sung, Gyuje;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.84-89
    • /
    • 2017
  • This paper presents a dual-wideband bandpass filter (BPF) with high band-to-band isolation and skirt selectivity using distributed composite right/left-handed (CRLH) transmission line (TL) quad-mode resonators (QMRs). The results of the proposed distributed CRLH TL unit cell analysis are used to establish the scattering parameters and the resonance frequencies of the QMR constituting the dual-wideband BPF. A novel dual-wideband bandpass filter is designed and fabricated, using the derived scattering characteristics. The measured results show that the fabricated dual-wideband bandpass filter has an insertion loss of less than 1.08dB in the lower band, and of 2.01dB in the upper band, a bandwidth of 2.8-5.52GHz and 9.68-12.26GHz, and a band-to-band isolation of more than 38dB, from 6.34-8.42GHz.

Design of Highly Linear Power Amplifier using Bandpass Filter based on Metamaterial Structure (Metamaterial 구조의 대역통과여파기를 이용한 WCDMA 대역 고선형 전력증폭기 설계)

  • Kim, Hyoung-Jun;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.1
    • /
    • pp.68-72
    • /
    • 2012
  • In this paper, highly linear power amplifier using bandpass filter based on metamaterial and Composite Right- / Left-Handed (CRLH) structure is proposed. The proposed bandpass filter consist of the series capacitor, series microstrip line and the parallel inductor, parallel microstrip line. The insertion loss is minimized at operation frequency and the $2^{nd}$ harmonic is suppressed by the bandpass filter using the CRLH structure. And we improved the Adjacent Channel Leakage Ratio (ACLR) using the characteristic of the proposed bandpass filter. At 2.14 GHz, we have obtained the output power of 38.83 dBm, the $2^{nd}$ harmonic of .61.33 dBc, the $3^{rd}$ IMD of .54.67 dBc, and ACLR of .51.33 dBc at 5 MHz offset, -56.50 dBc at 10 MHz offset, respectively.

SOI CMOS Miniaturized Tunable Bandpass Filter with Two Transmission zeros for High Power Application (고 출력 응용을 위한 2개의 전송영점을 가지는 최소화된 SOI CMOS 가변 대역 통과 여파기)

  • Im, Dokyung;Im, Donggu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.174-179
    • /
    • 2013
  • This paper presents a capacitor loaded tunable bandpass chip filter using multiple split ring resonators (MSRRs) with two transmission zeros. To obtain high selectivity and minimize the chip size, asymmetric feed lines are adopted to make a pair of transmission zeros located on each side of passband. Compared with conventional filters using cross-coupling or source-load coupling techniques, the proposed filter uses only two resonators to achieve high selectivity through a pair of transmission zeros. In order to optimize selectivity and sensitivity (insertion loss) of the filter, the effect of the position of asymmetric feed line on transmission zeros and insertion loss is analyzed. The SOI-CMOS switched capacitor composed of metal-insulator-metal (MIM) capacitor and stacked-FETs is loaded at outer rings of MSRRs to tune passband frequency and handle high power signal up to +30 dBm. By turning on or off the gate of the transistors, the passband frequency can be shifted from 4GH to 5GHz. The proposed on-chip filter is implemented in 0.18-${\mu}m$ SOI CMOS technology that makes it possible to integrate high-Q passive devices and stacked-FETs. The designed filter shows miniaturized size of only $4mm{\times}2mm$ (i.e., $0.177{\lambda}g{\times}0.088{\lambda}g$), where ${\lambda}g$ denotes the guided wave length of the $50{\Omega}$ microstrip line at center frequency. The measured insertion loss (S21)is about 5.1dB and 6.9dB at 5.4GHz and 4.5GHz, respectively. The designed filter shows out-of-band rejection greater than 20dB at 500MHz offset from center frequency.

Harminic Suppression of Band Pass Filter Using Photonic Band Gap Structure (PBG 구조를 이용한 대역통과 여파기 고조파 억제에 관한 연구)

  • Seo Chulhun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.1
    • /
    • pp.69-72
    • /
    • 2004
  • A bandpass filter has been designed by employing the PBG structure and the aperture on the ground together in this paper. The harmonics of band pass filter have been suppressed by employing the PBG structure and the bandwidth of it has been broadened by using the aperture on the ground. The three kinds of PBG structures has been combined to suppress the harmonics of the filter The center frequency of filter is 2.2 GHz and the bandwidth has been increased from $40\%$ by the aperture and all harmonics were suppressed about 35dBc by the PBG. The insertion loss has been reduced 3.0dB to 2.6dB.

Microstrip Bandpass Filter for Spurious Resonant Mode Rejection using Metameterial Transmission Line (메타매질 전송선로를 이용한 불요 공진모드 제거용 마이크로스트립 대역통과 필터)

  • Yang, Doo-Yeong;Lee, Min-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.566-571
    • /
    • 2009
  • In this paper, microstrip bandpass filter combined DCRLH metameterial-cells with a hairpin resonator is designed and fabricated to be transferred only fundamental passband signal, and removed a spurious resonant mode occurring when filter design using a microstrip transmission line is done. The bandpass filter is composed of CCRLH hairpin resonator and DCRLH interdigit metameterial-cells. The hairpin resonator with CCRLH property is implemented between two DCRLH interdigit metameterial-cells with DCRLH property, which is parallel to input port and output port. The interdigit metameterial-cells suppress spurious harmonics occurring on the higher order frequency and improve a filter performance. Insertion loss of the fabricated microstrip bandpass filter on the passband from 1.91GHz to 2.41GHz is 0.2dB, and attenuation on the stopband from 3GHz to 7.7GHz is bellower than -30dB. Therefore, this filter has a good performance for both mobile communications of WCDMA and wireless internet of WiBro.

Filter design for protecting signal interference between RF equipments on aircraft (항공기 RF 장비들의 신호 간섭 방지를 위한 필터 설계)

  • Kim, Junhyoung;Kim, Bong-Gyu;Jeon, Young-Gu;Lee, Seong-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.246-252
    • /
    • 2013
  • This paper presents method to suppress signal interference by using the filter in the RF output stage of the radiation equipment as a way to avoid interference between the RF(Radio Frequency) equipment mounted on aircraft. Especially filter design to suppress harmonics of the radiation equipment and testing method to verify the filter's performance is presented. Filter was installed at RF output stage of U/VHF radio in order to prevent interference between U/VHF(Ultra/Very High Frequency) radio and data link system. Filter design and testing method in this paper will be able to give help in the design of aircraft equipments as a tool that can be used to establish measures for problem of interference in the aircraft.

PM Reduction Characteristics of Partial Metal DPF with Screen Mesh Filter Structure (스크린 필터 구조 Partial Metal DPF의 PM 저감 특성)

  • Kim, Chunghui;Kim, Hyunchul;Lee, Geesoo;Choi, Jeonghwang;Chon, Munsoo;Shin, Suk Shin;Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.82-87
    • /
    • 2013
  • In this work, the 1L grade integrated metal DOC/DPF filter that can install in engine manifold position was developed to investigate the effect of platinum-coating amount of filter on the improvement of filter activation temperature and reduction of particulate matter (PM). This filter was installed in 2.9L CI engine which meets the EURO-4 emission regulation. Tests for PM reduction efficiency of filter were conducted under ND-13 mode with full-load test condition. It was revealed that the time to reach the activation temperature of metal filter ($280^{\circ}C$) was shorter as the amount of platinum-coating increased. This short activation time can be helpful for the reduction of CO and HC emissions during cold start condition. At the same time, PM reduced as the coating amount increased. The reduction percentage of $DOC_{40}$, $DOC_{20}$, and $DOC_0$ were 96.7% (2.34 mg/kW'h), 95.1% (3.47 mg/kW'h), and 94.5% (3.69 mg/kW'h) compared to previous result (71.4 mg/kW'h), respectively.