• 제목/요약/키워드: 1-D Electron density simulation

검색결과 12건 처리시간 0.024초

Simulation of Neutron irradiation Corrosion of Zr-4 Alloy Inside Water Pressure reactors by Ion Bombardment

  • Bai, X.D.;Wang, S.G.;Xu, J.;Chen, H.M.;Fan, Y.D.
    • 한국진공학회지
    • /
    • 제6권S1호
    • /
    • pp.96-109
    • /
    • 1997
  • In order to simulate the corrosion behavior of Zr-4 alloy in pressurized water reactors it was implanted (or bombarded) with 190ke V $Zr^+\; and \;Ar^+$ ions at liquid nitrogen temperature and room temperature respectively up to a dose of $5times10^{15} \sim 8\times10^{16} \textrm{ions/cm}^2$ The oxidation behavior and electrochemical vehavior were studied on implanted and unimplanted samples. The oxidation kinetics of the experimental samples were measured in pure oxygen at 923K and 133.3Pa. The corrosion parameters were measured by anodic polarization methods using a princeton Applied Research Model 350 corrosion measurement system. Auger Electron Spectroscopy (AES) and X-ray Photoelectric Spectroscopy (XPS) were employed to investigate the distribution and the ion valence of oxygen and zirconium ions inside the oxide films before and after implantation. it was found tat: 1) the $Zr^+$ ion implantation (or bombardment) enhanced the oxidation of Zircaloy-4 and resulted in that the oxidation weight gain of the samples at a dose of $8times10^{16}\textrm{ions/cm}^2$ was 4 times greater than that of the unimplantation ones;2) the valence of zirconium ion in the oxide films was classified as $Zr^0,Zr^+,Zr^{2+},Zr^{3+}\; and \;Zr^{4+}$ and the higher vlence of zirconium ion increased after the bombardment ; 3) the anodic passivation current density is about 2 ~ 3 times that of the unimplanted samples; 4) the implantation damage function of the effect of ion implantation on corrosion resistance of Zr-4 alloy was established.

  • PDF

Design and Fabrication of the 0.1${\mu}{\textrm}{m}$ Г-Shaped Gate PHEMT`s for Millimeter-Waves

  • Lee, Seong-Dae;Kim, Sung-Chan;Lee, Bok-Hyoung;Sul, Woo-Suk;Lim, Byeong-Ok;Dan-An;Yoon, yong-soon;kim, Sam-Dong;Shin, Dong-Hoon;Rhee, Jin-koo
    • Journal of electromagnetic engineering and science
    • /
    • 제1권1호
    • /
    • pp.73-77
    • /
    • 2001
  • We studied the fabrication of GaAs-based pseudomorphic high electron mobility transistors(PHEMT`s) for the purpose of millimeter- wave applications. To fabricate the high performance GaAs-based PHEMT`s, we performed the simulation to analyze the designed epitaxial-structures. Each unit processes, such as 0.1 m$\mu$$\Gamma$-gate lithography, silicon nitride passivation and air-bridge process were developed to achieve high performance device characteristics. The DC characteristics of the PHEMT`s were measured at a 70 $\mu$m unit gate width of 2 gate fingers, and showed a good pinch-off property ($V_p$= -1.75 V) and a drain-source saturation current density ($I_{dss}$) of 450 mA/mm. Maximum extrinsic transconductance $(g_m)$ was 363.6 mS/mm at $V_{gs}$ = -0.7 V, $V_{ds}$ = 1.5 V, and $I_{ds}$ =0.5 $I_{dss}$. The RF measurements were performed in the frequency range of 1.0~50 GHz. For this measurement, the drain and gate voltage were 1.5 V and -0.7 V, respectively. At 50 GHz, 9.2 dB of maximum stable gain (MSG) and 3.2 dB of $S_{21}$ gain were obtained, respectively. A current gain cut-off frequency $(f_T)$ of 106 GHz and a maximum frequency of oscillation $(f_{max})$ of 160 GHz were achieved from the fabricated PHEMT\\`s of 0.1 m$\mu$ gate length.h.

  • PDF