• Title/Summary/Keyword: 1차 신뢰성 분석

Search Result 335, Processing Time 0.037 seconds

A comparative study of soft tissue profile between Korean and Caucasian young adults under NHP (한국인 정상교합자의 natural head position시 안모의 연조직에 대한 측모두부방사선학적 분석)

  • Kang, Seung-Goo;Lee, Young-Jun;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.33 no.5 s.100
    • /
    • pp.323-337
    • /
    • 2003
  • This study was performed to establish Korean soft tissue cephalometric norms, to compare the norms between sexes and between races, and then to suggest a guideline to execute orthodontic diagnosis and treatment planning for dentofacial deformities in Korean. Young Korean adults were selected. They were 27 males $(23.8{\pm}2.6-year-old)$ and 20 females $(22.5{\pm}1.7-year-old)$ who had harmonious facial balance. After taking lateral cephalograms under the natural head position which is widely known as a highly reliable and reproducible reference position, films were traced and analysing factors were measured as introduced by Arnett et at. Comparisons were done between male and female groups and between Korean and Caucasian groups using unpaired t-test. From the results it was concluded that Korean male had generally thicker lower facial soft tissue and smaller nasolabial angle, longer facial height, deeper facial depth, and more protrusive lower face than Korean female. From the comparison with Caucasian norms adopted from the research of Arnett et al., both Korean male and female showed longer facial lengths generally except less exposed maxillary incisor, and shorter facial depth than Caucasian counterparts. Also, both races showed similar horizontal position of maxillary structures from TVL (true vertical line), but there were more significant anteroposterior differences of marilla-mandible in Korean groups. These results mean Korean had relatively more retruded mandibular structures from the reference line, TVL. Individuals who had harmonious facial balance showed similar facial angle, more or less 170 degree, regardless of sexes or races.

Estimation of Overall Heat Transfer Coefficient for Single Layer Covering in Greenhouse (일중 피복온실의 관류열전달계수 산정)

  • Hwang, Young-Yun;Lee, Jong-Won;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.108-115
    • /
    • 2013
  • This study was conducted to suggest a model to calculate the overall heat transfer coefficient of single layer covering for various greenhouse conditions. There was a strong correlation between cover surface temperature and inside air temperature of greenhouse. The equations to calculate the convective and radiative heat transfer coefficients proposed by Kittas were best fitted for calculation of the overall heat transfer coefficient. Because the coefficient of linear regression between the calculated and measured cover surface temperature was founded to 0.98, the slope of the straight line is 1.009 and the intercept is 0.001, the calculation model of overall heat transfer coefficient proposed by this study is acceptable. The convective heat transfer between the inner cover surface and the inside air was greater than the radiative heat transfer, and the difference increased as the wind speed rose. The convective heat transfer between the outer cover surface and the outside air was less than the radiative heat transfer for the low wind speed, but greater than for the high wind speed. The outer cover convective heat flux increased proportion to the inner cover convective heat flux linearly. The overall heat transfer coefficient increased but the cover surface temperature decreased as the wind speed increased, and the regression function was founded to be logarithmic and power function, respectively.

생물공정의 측정 및 새로운 공정변수의 개발

  • Heo, Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.51-52
    • /
    • 2000
  • 생물공정의 운전에 있어서 적절한 공정변수가 부족한 경우가 많다. 이것은 멸균과정을 견딜 수 있는 신뢰성 높은 센서가 부족하기 때문이다[1]. 생물공정에 주로 사용되는 센서로서는 온도, pH, D.O., rpm, viscosoty 등이 있으나 이 센서들은 배양액의 물리적 혹은 화학적 상태를 측정할 수 있는 경우가 대부분이다[2]. 미생물의 대사활동과 관련이 있는 공정 변수로는 배출가스의 성분을 측정하여 얻을 수 있는 Oxygen uptake rate, Carbon dioxide evolution rate 및 Respiratory quotient가 있으며 현재 생물공정의 운전에 사용되고 있다[3]. 그러나 반복적인 센서의 보정과 연결관의 잦은 청소 및 보수를 필요로 하여 제한적으로 사용되고있는 실정이다. 자동화된 습식분석장치, Gas chromatograph, High Performace Liquid Chromatograph 혹은 Mass spectrophtometry 등을 온라인 샘플 처리장치와 연결하여 발효조의 배양액의 성분을 온라인으로 분석하고 공정의 운전에 응용하는 사례가 많이 발표되었다[4-6]. 고가의 장비 및 운전의 번거러움이나 추가적인 인력이 필요하므로 역시 특별한 경우에만 사용되고 있다. 이외에도 여러 종류의 온라인 센서 및 바이오 센서등이 개발되어 사용되고 있으나 역시 그 사용범위는 특수한 영역에 한정되어있다. 이와 같이 새로운 센서를 개발하여 공정변수를 측정하려는 시도중의 하나가 소프트웨어 센서의 개발이다. 이 것은 공정상에서 발생하는 1차 공정변수를 이용하여 배양액의 상태 혹은 2차적인 공정 변수를 추측해내는 것이다. 대부분의 경우 기존의 공정 변수를 사용하므로 추가적인 비용이 들지 않고 소프트웨어의 형태로 구현되므로 센서의 보정과 설치 및 유지관리의 노력이 매우 적은 장점이 있다. 본 연구에서는 생물공정에서 자동제어 과정에서 발생하는 여러 가지 공정상의 제어 신호로부터 새로운 공정 변수를 얻어내고자 시도하였다. 대부분의 생물공정에서는 pH의 자동제어가 필수적인데 자동제어 과정에서 발생하는 pH 제어 신호 및 pH의 변화 응답신호를 이용하여 배지의 완충용량의 변화와 알칼리의 소비속도를 온라인으로 측정할 수 있었다. 여기에 인공지능망을 설계하여 균체의 량을 온라인으로 추정하는 방법을 개발하였다 [7].산업용 발효조의 운전 온도는 주로 냉각수의 단속적인 공급에 의하여 항상 일정하게 조절된다. 따라서 냉각수의 냉각량을 측정하면 미생물의 배양시 발생하는 대사열량을 측정할 수 있게 된다. 본 연구에서는 실험실의 발효조를 냉각수의 단속적인 공급에 의하여 자동온도 조절이 되도록 개조하고 여기에 냉각수의 유출입 지점에 온도센서를 부착하여 냉각수의 온도를 측정하고 냉각수의 공급량과 대기의 온도 등을 측정하여 대사열의 발생을 추정할 수 있었다. 동시에 이를 이용하여 유가배양시 기질을 공급하는 공정변수로 사용하였다 [8]. 생물학적인 폐수처리장치인 활성 슬러지법에서 미생물의 활성을 측정하는 방법은 아직 그다지 개발되어있지 않다. 본 연구에서는 슬러지의 주 구성원이 미생물인 점에 착안하여 침전시 슬러지층과 상등액의 온도차를 측정하여 대사열량의 발생량을 측정하고 슬러지의 활성을 측정할 수 있는 방법을 개발하였다.

  • PDF

Establishment of an Ice Core Processing Method and Analytical Procedures for Fundamental Proxies (빙하코어의 전처리 방법 및 기초 프록시 분석법 확립)

  • Jun, Seong Joon;Hong, Sang Bum;Hur, Soon Do;Lee, Jeonghoon;Kang, Jung-Ho;Hwang, Hee Jin;Chung, Ji Woong;Jung, Hye Jin;Han, Changhee;Hong, Sungmin
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.13-24
    • /
    • 2014
  • We established the first complete ice core processing method and analytical procedures for fundamental proxies, using a 40.2 m long ice core drilled on the Mt. Tsambagarav glacier in the Mongolian Altai mountains in July 2008. The whole core was first divided into two sub ice core sections and the measurements of the visual stratigraphy and electrical conductivity were performed on the surface of these sub core sections. A continuous sequence of samples was then prepared for chemical analyses (stable isotope ratios of oxygen ($^{18}O/^{16}O$) and hydrogen ($^2H/^1H$), soluble ions and trace elements). A total of 29 insoluble dust layers were identified from the measurement of visual stratigraphy. The electrical conductivity measurement (ECM) shows 11 peaks with the current more than 0.8 ${\mu}A$ Comparing the profiles of $SO_4{^{2-}}$ and $Cl^-$ concentrations to correlate with known volcanic eruptions, the first two ECM peaks appear to be linked to the eruptions (January and June 2007) of Kliuchevskoi volcano on the Kamchatka Peninsula of Russia, which supports the reliability of our ECM data. Finally, the composition of stable isotopes (${\delta}^{18}O$ and ${\delta}D$) shows a well-defined seasonal variation, suggesting that various chemical proxies may have been well preserved in the successive ice layers of Tsambagarav ice core. Our ice core processing method and analytical procedures for fundamental proxies are expected to be used for paleoclimate and paleoenvironmental studies from polar and alpine ice cores.

Evaluation for Rock Cleavage Using Distributional Characteristics of Microcracks and Brazilian Tensile Strengths (미세균열과 압열인장강도의 분포 특성을 이용한 결의 평가)

  • Park, Deok-Won
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.99-114
    • /
    • 2020
  • The characteristics of the Brazilian tensile strengths(σt) parallel to the rock cleavages in Jurassic granite from Geochang were analysed. The evaluation for the six directions of rock cleavages was performed using the parameter values on microcrack length and the above strength. The strength values of the five test specimens belonging to each direction were classified into five groups. The strength values of these five groups increase in order of group A < B < C < D < E. The close dependence between the above microcrack and strength was derived. The analysis results of this study are summarized as follows. First, the chart showing the variation and characteristics of strength among the three rock cleavages were made. In the above chart, the strength values of six directions belonging to each group were arranged in order of rift(R1 and R2), grain(G1 and G2) and hardway(H1 and H2). The strength distribution lines of the five groups concentrate in the direction of R1. And the widths among the above five lines indicating strength difference(Δσt) are the most narrowest in R1 direction. From the related chart, the variation characteristics among the two directions forming each rock cleavage were derived. G2(2)-test specimen shows higher value and lower value of the difference in strength compared to the case of G1(1)-test specimen. These kinds of phenomena are the same as the case between the test specimen H2(2) and H1(1). The strength characteristics of the above test specimens (2) suggest lower microcrack density value and higher degree of uniformity in the distribution of microcracks arrayed parallel to the loading direction compared to those of test specimens (1). The six strength values belonging to each group were arranged in increasing order in the above chart. The strength values of the test specimens belonging to both group D and E appear in order of R1 < R2 < G1 < H1 < G2 < H2. Therefore, the strength values of group D and E can be indicator values for evaluating the six directions of rock cleavages. Second, the correlation chart between slope angle(θ) and strength difference(Δσt) were made. The values of the above two parameters were obtained from the five strength distribution lines connecting between the two directions. From the chart related to rift plane(G1-H1, R'), grain plane(R1-H2, G') and hardway plane(R2-G2, H'), the slope values of linear functions increase in order of R'(0.391) < G'(0.470) < H'(0.485). Among three planes, the charts related to hardway plane show the highest distribution density among the five groups. From the related chart for rift(R1-R2, R), grain(G1-G2, G) and hardway(H1-H2, H), the slope values of linear functions increase in order of rift(0.407) < hardway(0.453) < grain(0.460). Among three rock cleavages, the charts related to rift show the highest frequency of groups belonging to the lower region. Taken together, the width of distribution of the slope angle among the three planes and three rock cleavages increase in order of H' < G < R' < R < G' < H. Third, the correlation analysis among the parameters related to microcrack length and the tensile strengths was performed. These parameters may include frequency(N), total length(Lt), mean length(Lm), median length(Lmed) and density(ρ). The correlation charts among individual parameters on the above microcrack(X) and corresponding five levels of tensile strengths for the five groups(Y) were made. From the five kinds of correlation charts, the values of correlation coefficients(R2) increase along with the five levels of strengths. The mean values of the five correlation coefficients from each chart increase in order of 0.22(N) < 0.34(Lt) < 0.38(ρ) < 0.57(Lmed) < 0.58(Lm). Fourth, the correlation chart among the corresponding maximum strength for group E(X) and the above five parameters(Y) were made. From the related chart, the values of correlation coefficient increase in order of 0.61(N) < 0.81(Lt) < 0.87(ρ) < 0.93(Lm) < 0.96(Lmed). The two parameters that have the highest correlations are median length with maximum strength. Through the above correlation analysis between microcrack and strength, the credibility for the results from this study can be enhanced.

Thermal Design of Electronic for Controlling X-band Antenna of Compact Advanced Satellite (차세대 중형위성 탑재 X-밴드 안테나 구동용 전자유닛 APD 열설계 및 열해석)

  • Kim, Hye-In;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.57-67
    • /
    • 2018
  • The APD (Antenna Pointing Driver) is an electronic equipment tool that is used to drive the two-axis gimbal-type antenna for the image data transmission of CAS (Compact Advanced Satellite). In this study, a heat dissipation of EEE (Electrical, Electronic and Electromechanical) is reviewed, to identify the parts that directly affected its efficiency, lifetime as well as the reliability of the structure. This event eventually incurs a failure of the EEE part itself, or even the entire satellite system as noted in experiments in this case. To guarantee reliability of electronic equipment during the mission, the junction temperature of EEE parts is considered a significant and important design factor, and subsequently must be secured within the allowable range. Therefore, the notation of the thermal analysis considering the derating is indispensable, and a proper thermal mathematical model should be constructed for this case. In this study, the thermal design and thermal analysis are performed to confirm the temperature requirement of the APD. In addition, we noted that the validity of the thermal model, according to each of the identified modeling methods, was therefore compared through the thermal analysis utilized in this case.

Preanalytical Stability of Adrenocorticotropic Hormone Depends on Time to Centrifugation (전혈에서 시간과 온도에 따른 Adrenocorticotropic Hormone의 안정성 평가)

  • Shin, Sun-Young;Lee, Hyun-Joo;Min, Gyung-Sun;Lee, Ho-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.116-119
    • /
    • 2009
  • Background: Preanalytical factors can affect reliability of hormone assay results. Adrenocorticotropic hormone (ACTH) in blood is considered highly unstable because of proteolytic degradation, so storage of blood samples on ice until analysis is recommended. In clinical practice, however, this procedure may present logistical problems because most samples for ACTH measurement must be shipped from the place of sample collection to the laboratory. Therefore, we studied the impact of time and temperature before plasma separation and analysis on the results of ACTH assays. Methods: A total number of 22 patients were enrolled in this study. We obtained 2 blood samples. ACTH concentrations were 35~126 pg/mL. ACTH concentrations were measured by immunoradiometric assay (IRMA) using commercial kits (CIS Biointernational, Gif-sur-Yvette, France). Results: ACTH levels showed a significant difference between the samples of $22^{\circ}C$ EDTA and $4^{\circ}C$ EDTA. Measured ACTH concentrations significantly decreased with time before freezing at $-20^{\circ}C$. ACTH levels showed no significant difference between the groups of after storage for 24 hr without centrifugation at $22^{\circ}C$ and $4^{\circ}C$. Conclusion: We recommend that blood samples be obtained on pre-chilled EDTA collection tubes. The shortest possible time between sample collection and processing is always the best laboratory practice.

  • PDF

Water Quality Analysis of Hongcheon River Basin Under Climate Change (기후변화에 따른 홍천강 유역의 수질 변화 분석)

  • Kim, Duckhwan;Hong, Seung Jin;Kim, Jungwook;Han, Daegun;Hong, Ilpyo;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.348-358
    • /
    • 2015
  • Impacts of climate change are being observed in the globe as well as the Korean peninsula. In the past 100 years, the average temperature of the earth rose about 0.75 degree in celsius, while that of Korean peninsula rose about 1.5 degree in celsius. The fifth Assessment Report of IPCC(Intergovermental Panel on Climate Change) predicts that the water pollution will be aggravated by change of hydrologic extremes such as floods and droughts and increase of water temperature (KMA and MOLIT, 2009). In this study, future runoff was calculated by applying climate change scenario to analyze the future water quality for each targe period (Obs : 2001 ~ 2010, Target I : 2011 ~ 2040, Target II : 2041 ~ 2070, Target III : 2071 ~ 2100) in Hongcheon river basin, Korea. In addition, The future water quality was analyzed by using multiple linear regression analysis and artificial neural networks after flow-duration curve analysis. As the results of future water quality prediction in Hongcheon river basin, we have known that BOD, COD and SS will be increased at the end of 21 century. Therefore, we need consider long-term water and water quality management planning and monitoring for the improvement of water quality in the future. For the prediction of more reliable future water quality, we may need consider various social factors with climate components.

Effects of Post-annealing and Temperature/Humidity Conditions on the Interfacial Adhesion Energies of ALD RuAlO Diffusion Barrier Layer for Cu Interconnects (후속열처리 및 고온고습 조건에 따른 Cu 배선 확산 방지층 적용을 위한 ALD RuAlO 박막의 계면접착에너지에 관한 연구)

  • Lee, Hyeonchul;Jeong, Minsu;Bae, Byung-Hyun;Cheon, Taehun;Kim, Soo-Hyun;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.49-55
    • /
    • 2016
  • The effects of post-annealing and temperature/humidity conditions on the interfacial adhesion energies of atomic layer deposited RuAlO diffusion barrier layer for Cu interconnects were systematically investigated. The initial interfacial adhesion energy measured by four-point bending test was $7.60J/m^2$. The interfacial adhesion energy decreased to $5.65J/m^2$ after 500 hrs at $85^{\circ}C$/85% T/H condition, while it increased to $24.05J/m^2$ after annealing at $200^{\circ}C$ for 500 hrs. The X-ray photoemission spectroscopy (XPS) analysis showed that delaminated interface was RuAlO/$SiO_2$ for as-bonded and T/H conditions, while it was Cu/RuAlO for post-annealing condition. XPS O1s peak separation results revealed that the effective generation of strong Al-O-Si bonds between $AlO_x$ and $SiO_2$ interface at optimum post-annealing conditions is responsible for enhanced interfacial adhesion energies between RuAlO/$SiO_2$ interface, which would lead to good electrical and mechanical reliabilities of atomic layer deposited RuAlO diffusion barrier for advanced Cu interconnects.

The Performance Evaluation and Analysis of Next Generation Wireless LAN with OFDM (OFDM을 적용한 차세대 무선 LAN의 성능 평가 및 분석)

  • Han, Kyung-Su;Youn, Hee-Sang
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.1
    • /
    • pp.37-43
    • /
    • 2002
  • This paper describes the performance evaluation and analysis of Wireless Local Area Network (W-LAN) in the 5 GHz ISM-band in compliance with IEEE 802.11a. At present, most W-LAN products are based on 2.4 GHz band, but low speed (11Mbps) has the limitation to serve systems demanding high-speed data transmission. To solve this problem, it is necessary to design next generation W-LAN system with 54Mbps in the 5GHz. It is sure that implementation of next generation W-LAN will bring competitive advantages. In particular, it will support telecommunications for high-speed mobile environments as well as for fixed places such as a school zone, a lecture room, a hospital and other premises. A few simulation methods are applied to more accurate and reliable performance analysis of next generation W-LAN. To verify if continuous data service is supported for a high-speed mobile notebook, multi-path fading channels between wireless Access Point (AP) and wireless Network Interface Card (NIC) are modeled. In addition, low interference is analyzed via convolutional codes and Orthogonal Frequency-Division Multiplexing (OFDM). Also, to obtain reliable Bit Error Rate (BER), a single tap Least Mean Square (LMS) equalizer is applied. Given the above simulation, next generation W-LAN is an ideal solution for continuous data transmission in high-speed mobile environments.

  • PDF