• 제목/요약/키워드: 1차공기

검색결과 471건 처리시간 0.025초

Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator (생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증)

  • Kang, Tae-Ho;Nguyen, Thanh D.B.;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • 제47권5호
    • /
    • pp.630-638
    • /
    • 2009
  • A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides($NO_x$) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature($980^{\circ}C$) of simulation has the same value as in situ experiment one. The $NO_x$ reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher $NO_x$ reduction efficiency than the injection of the equal ratio flowrate in each nozzle.

Analyses of Larg Cell Area MCFC System Dynamics (대면적 용융탄산염 연료전지 시스템 동특성 분석)

  • 강병삼;고준호;이충곤;임희천
    • Journal of Energy Engineering
    • /
    • 제8권4호
    • /
    • pp.592-604
    • /
    • 1999
  • The steady state and dynamic characteristics of large cell area MCFC stacks were analyzed to solve the problems such as temperature difference generated in stacks and pressure difference between anode and cathode. Manipulated variables (current density, duel utilization rate, oxidant utilization rate) and controlled variables (temperature difference, anode and cathode pressure difference) which had an important effect on the MCFC stack performance were determined using operation results of two types of MCFC stacks (5kW (3,000 $\textrm{cm}^2$, 20 ea). 3kW (6,000 $\textrm{cm}^2$, 5ea)). The stability and transfer function representing system dynamics were obtained by steady state gain rate which showed the relative change between MVs and CVs. The transfer function was a 3$\times$3 matrix and a typical first order system without time delay. The optimal operating condition of large cell area MCFC stacks could be determined by analyzing dynamic characteristics. In case of a 5 kW MCFC stack, pressurized operation with recycle flow should be used to control the outlet temperature less than 68$0^{\circ}C$ and to control the MCFC system effectively. MIMO control or decoupler should be used to remove the interaction between MVs and CVs. This result will be used as important data in determining the control structure design and operation mode of large cell area MCFC systems in the future.

  • PDF

A Study on Nitric Oxide Formation & Reduction in Industrial Burner (I) -NO Concetration-Distribution in Double Swirling Diffusion Flame by LIF- (산업용 고부하버너 연소에서의 $NO_x$ 형성 및 저감에 관한 연구(I)-레이저 유도 형광법(LIF)를 이용한 이중선회 확산화염의 NO 농도 분포 측정-)

  • 박경석;김경수
    • Journal of Energy Engineering
    • /
    • 제10권4호
    • /
    • pp.379-386
    • /
    • 2001
  • This experimental study deals with on Nitric Oxide Formation & Reduction in Industrial Bunner. In this study, Laser-induced fluorescence (LIF) techniques have been used for quantitative measurements of Nitric Oxide. The NO A-X (0, 0) Vibrational band around 226 nm was excited using a XeCl excimer-pumped dye laser. And on-line excitation used $P_{21}+Q_1(14.5)/R_{12}+Q_2(20.5)/P_1(23.5)$ transition, for minimizing the other interferential effect. The measurements were taken NO concentration distribution in double swirling diffusion flame. In this swirl burner, NO concentration in downstream fo the flame decrease as primary/secondary air ratio increases.

  • PDF

Optimization of the Sulfur-oxidzing Bacteria, Thiobacillus novellus SRM (황 산화 세균인 Thiobacillus novellus SRM 성장 최적화)

  • 권규혁;차월석;고한철;이광연;박돈희;차진명
    • KSBB Journal
    • /
    • 제18권6호
    • /
    • pp.443-447
    • /
    • 2003
  • The microorganism was isolated from the night soil treatment plant for the removal of sulfur compounds. The growth conditions of the sulfur-oxidizing bacteria were investigated and the isolate characterized as Thiobacillus noveilus SRM. The optimal pH of Thiobacillus novellus SRM on cell growth was pH 7.0 and the optimal temperature was 30$^{\circ}C$ and the optimal air flow rate was 1 vvm, respectively. As a results of cell growth from the Monod plot, the specific growth rate was 0.032 hr$\^$-l/, $V_{max}$ was 1.43 hr$\^$-l/ and $K_{m}$ was 0.32, respectively. The thiosulfate oxidation by Thiobacillus novellus SRM was made of sulfate ion. The sulfate ion reduced pH and decreased cell growth.

Effects of Soil Temperature on Biodegradation Rate of Diesel Compounds from a Field Pilot Test Using Hot Air Injection Process (고온공기주입 공법 적용시 지중온도가 생분해속도에 미치는 영향)

  • Park Gi-Ho;Shin Hang-Sik;Park Min-Ho;Hong Seung-Mo;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • 제10권4호
    • /
    • pp.45-53
    • /
    • 2005
  • The objective of this study is to evaluate the effects of changes in soil temperature on biodegradation rate of diesel compounds from a field pilot test using hot air injection process. Total remediation time was estimated from in-situ biodegradation rate and temperature for optimum biodegradation. All tests were conducted by measuring in-situ respiration rates every about 10 days on highly contaminated area where an accidental diesel release occurred. The applied remediation methods were hot air injection/extraction process to volatilize and extract diesel compounds followed by a bioremediation process to degrade residual diesels in soils. Oxygen consumption rate varied from 2.2 to 46.3%/day in the range of 26 to $60^{\circ}C$, and maximum $O_2$ consumption rate was observed at $32.0^{\circ}C$. Zero-order biodegradation rate estimated on the basis of oxygen consumption rates varied from 6.5 to 21.3 mg/kg-day, and the maximum biodegradation rate was observed at $32^{\circ}C$ as well. In other temperature range, the values were in the decreasing trend. The first-order kinetic constants (k) estimated from in-situ respiration rates measured periodically were 0.0027, 0.0013, and $0.0006d^{-1}$ at 32.8, 41.1, and $52.7^{\circ}C$, respectively. The estimated remediation time was from 2 to 9 years, provided that final TPH concentration in soils was set to 870 mg/kg.

Construction of an Underground Heat Exchanger for Pig Housing (양돈용 지열교환기의 개발)

  • ;;H. J. Heege
    • Journal of Animal Environmental Science
    • /
    • 제1권2호
    • /
    • pp.125-136
    • /
    • 1995
  • To use the earth heat for the pig housing, an underground heat exchanger has constructed in depth of 2.5m and 20m length. The temperature of the outlet air was max. 8 kelvin higher than that of inlet air in winter season. In spite of the -7$^{\circ}C$ outside temperature, it could keep the air temperature from the earth tube above zero degree. The heating performance was maximum in value of 3.25Wh/㎥ and average of 1.75Wh/㎥ by the airflow volume of 340㎥/h. The slope of relative humidity from outlet air has shown gentler than that of inlet air. By using the underground heat exchanger, it would be possible to prepare an relatively uniform relative humidity in the swine stalls. The temperatures on the earth, where PVC pipes are buried, have shown 10~12$^{\circ}C$ on March. This can reduce the difference between day and night temperature during this season by using the underground heat exchanger.

  • PDF

Pressure Recovery in a Supersonic Ejector of a High Altitude Turbofan Engine Testing Chamber (터보팬 엔진의 고고도 성능의 초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제14권6호
    • /
    • pp.53-59
    • /
    • 2010
  • This research aims in finding a more optimal ejector size for evacuating engine exhaust gasses and 20% of the cell cooling air. The remaining 80% of cell cooling air pumped into the test chamber is separately exhausted from the test chamber via a discharge port fitted with flow control valves and vacuum pump. Unlike its predecessor this configuration utilizes a smaller capture area to improve pressure recovery. The modified ejector size has a diameter of 1100mm enough to evacuate 66kg/s jet engine exhaust in addition to about 20%, 24kg/s of the cell cooling air tapped from the sterling chamber. This configurations has an area ratio of the engine exit and ejector inlet of about 1.2. Simulation results of the proposed ejector configuration, indicates improved pressure recovery.

Aerodynamic Drag Reduction in Cylindrical Model Using DBD Plasma Actuator (DBD 플라즈마 구동기를 이용한 원통모델의 공기저항저감)

  • Lee, Changwook;Sim, Ju-Hyeong;Han, Sunghyun;Yun, Su Hwan;Kim, Taegyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제19권1호
    • /
    • pp.25-32
    • /
    • 2015
  • Dielectric barrier discharge (DBD) plasma actuator was designed to reduce aerodynamic drag in a cylindrical model and wind tunnel test was performed at various wind velocities. In addition, computational fluid dynamics (CFD) analysis and flow visualization were used to investigate the effect of the plasma on the flow stream in the cylinderical model. At low wind velocity, the plasma actuator had no effects because flow separation did not appear. The aerodynamic drag was reduced by 14% at 14 m/s and by 27% at 17 m/s, respectively. It was confirmed by CFD analysis and flow visualization that the DBD plasma actuator decreased in pressure difference around the cylindrical model, thus decreasing the magnitude of wake vortex.

Development of Intelligent IoT Exhaustion System for Bag Filter Collector (백필터 집진기의 지능형 IoT 탈진 시스템 개발)

  • Jang, Sung-Cheol;Lee, Jung-Won
    • Journal of Internet of Things and Convergence
    • /
    • 제5권1호
    • /
    • pp.29-34
    • /
    • 2019
  • A bag filter collector is a kind of air purifier that organizes several or dozens of filters to purify fine dust and release clean air into the atmosphere. If the bag filter length is less than 5m, the dust and fume attached to the bag filter could be effectively removed by passing the compressed air generated by the diaphragm valve through the venturi. Injectors that are more efficient and economical are urgently needed to achieve satisfactory results for long-bag exhaustion of more than 7 meters. In the case of existing domestic and foreign injectors, a number of blow tubes were dismantled during maintenance, and the injector and blow tube were combined to pose a number of problems, including inconvenience of work due to weight increase. In this study, injector flow for the development of the best use of interpretation of the coanda effect and the fourth round of industrial technology Intelligent automation of exhaustion, have been engineered energy than standard equipment. lowering costs and filter life to radically improve the commercial studies.

Pressure Recovery in a supersonic ejector of a high altitude testing chamber (초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.833-837
    • /
    • 2010
  • This study aims at finding an optimal exhaust diffuser design of a high altitude testing chamber for a low bypass turbofan engine (F404-402) with thrust pound force of 17,700 and air mass flow rate of 66kg/s ejecting at a speed of Mach 1.66. The final proposed ejector size has better pressure recovery characteristics and targets to reduce operational cost at engine performance testing. Conventional high altitude test chamber layout was adopted and first drawn in two dimensions using Autocad software so as to determine the gas path, the ejector frontal size was then determined from gas dynamics equations considering traditional gas ejection method where both the engine exhaust and cell cooling air are exhausted via the ejector. Modification to a smaller ejector with an alternative secondary cell cooling exhaust port was then performed and modelled in 3D using Solid Works software.

  • PDF