• Title/Summary/Keyword: 1열차

Search Result 613, Processing Time 0.025 seconds

Train Operations Scheduling System for Train Time-Table (열차 발착시간에 대한 열차 운용 스케줄링 시스템)

  • 유영훈;황종규;조근식
    • Journal of Intelligence and Information Systems
    • /
    • v.5 no.1
    • /
    • pp.81-93
    • /
    • 1999
  • 열차운용이라 함은 열차의 출발과 도착 시간을 나타내는 열차번호들에 여러 객차들로 구성된 하나의 열차를 일컫는 열차 다이아(train DIAgram)들을 여러 제약조건을 고려하여 배정함으로서 열차 번호가 열차 다이아에 의해 운행될 수 있도록 열차운용 다이아를 작성하는 작업이다. 이러한 작업을 다수의 스케줄링 전문가들이 스케줄링 할 경우 많은 시간과 노력을 감수해야만 하며, 전문가의 실수로 인해 오류가 발생할 가능성이 있다. 뿐만 아니라, 복잡한 스케줄의 특성상 운용 비용이 적게 드는 스케줄 결과를 이끌어 내기가 어렵다. 본 연구에서는 열차운용 시스템을 구성하기 위해서 현재 철도청에서 사용하는 시스템을 분석하여, 열차운용 스케줄링 시스템을 모델링 하였고, 이에 모델링한 시스템을 바탕으로 CSP(Constraint Satisfaction Problems: 제약조건 만족 문제) 해결 기법을 적용하여 계산시간 및 계산 복잡성 면에서 효율적인 스케줄링을 행함과 동시에 비용 최적 함수를 적용함으로서 열차 운용 비용이 최소가 되는 열차운용 스케줄링 시스템을 구현하였다. 더불어, 시스템모델 검증과정의 하나로 과거 운용되었던 새마을호 열차시간표와 열차 데이터를 사용하여 열차 운용 및 운용 비용의 최적화를 실험하였다.

  • PDF

Effect of a Pressure Relief System in a High-speed Railway Tunnel (고속 열차 터널의 공기압력 감소를 위한 압력 제어 시스템)

  • Seo, Sang Yeon;Ha, Heesang;Lee, Sang Pil
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.247-257
    • /
    • 2018
  • High-speed trains have been developed widely in many countries in order to transport large quantity of people and commodities rapidly. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. The resistance caused from air pressure induces micro pressure wave and discomfort to passengers in a train. Therefore, a pressure relief system should be installed in a tunnel to reduce the resistance acting against the running train in a tunnel. Additionally, the shape of a grain should be streamlined in order to reduce aerodynamic resistance caused by a high-speed train. The cross-section of a tunnel also should be carefully designed to reduce discomfort of passengers. This study represents the effect of pressure relief ducts installed between two running tunnels. The pressure relief duct was integrated with a cross-passage in order to save cost and construction time. One-dimensional network numerical simulations were carried out in order to estimate the effect of pressure relief systems.

A Study on Model of Train Slot Allocation for Railway Network with Multi Operating System (복수 운영체제에서의 철도네트워크 열차슬롯배분 모형 연구)

  • Choi, Jong-Bin;Lee, Jinsun
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.142-155
    • /
    • 2017
  • It is anticipated that, in cases in which different train operators share railway network, conflicts may occur among train operators with regard to train operation rate, train priorities, and arrival and departure time; besides this, during times when there is high demand for trains, operators will request train operations intensively, steadily increasing train conflict phenomena. In the present study, train operation sequence, minimum headway, arrival and departure time, train priorities, etc., were analyzed, and while using train departure times as decision variables in variably given train schedules, by adjusting train time requested by train operators, and finally rejecting the train times in cases in which conflict resolution is impossible, so that various constraints can be satisfied, a train slot allocation model was suggested to find the objective function, that is, the maximum number of train slots that can be practically applicable to railway operation.

Development of ATP Train Separation Control Simulator for Radio-based Train Control System (무선통신기반 열차제어시스템 ATP 열차간격제어알고리즘 시뮬레이터 개발)

  • Yoon, Yong-Ki;Oh, She-Chan;Choi, June-Young;Park, Jae-Young;Yang, Hai-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • This paper includes ATP(Automatic Train Protection) simulator development and ATP algorithm verification to allocate wayside and train-borne and verify ATP functions of communications based train control system. The train control system has some characteristics such as simple structure and high safety when wireless communication technology is applied to the train control system. Especially, vital functions can be performed with in wayside and train-borne ATP. However, different system can be realized because I/F contents vary in accordance with vital functional allocation of ATP. Drawing characteristics in accordance with wayside and train-borne functional allocation and drawing I/F details affected by such characteristics are needed accordingly. This paper includes ATP simulator development creating train location information by direct activation of an electric motor, verifies train safety distance control algorithm of ATP by functional allocation such as train movement authority and train speed limit to ATP, and draws any supplementation needed. Appropriate simulated environment for verify ATP algorithm and main factors that affect to the ATP function were confirmed.

Study on the Speed Control Code Design for Fixed Block TCS (고정폐색 열차제어시스템 속도제어코드 설계에 관한 연구)

  • Lee, Kang-Mi;Shin, Kyung-Ho;Shin, Duc-Ko;Lee, Jae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.37-41
    • /
    • 2012
  • Kyung-Bu High Speed Railway is operated in train control system(tcs) of fixed block operated in a way of dividing track circuits into several blocks in accordance with operation circumstances such as rolling stocks, grade, curves and facilities. The TCS of fixed block system refers to a continuous train control system, which transfers operational information such as entry and exit speed, distance-to-go, and deceleration etc. into on-board train control equipment on the basis of block occupancy of a preceding train. It guarantees a safe operation of trains by giving an emergency braking order, in case that a train exceeds an entry and exit speed of a corresponding block. In this paper, we analyze the speed control code deducing in accordance with maximum operation speed and characteristics of rolling stocks by analyzing principles of generation of speed control code allocated in blocks for safe operation, then train operational efficiency was analyzed by means of analysis of operation headway in accordance with the deduced speed control code. This study will be used to design in case of getting an increase in speed for existing high speed line or new high speed line TCS.

Measurement and Analysis for the Upper Side Flow Boundary Layer of a High Speed Train Using Wind Tunnel Experiments with a Scaled Model (축소모형 풍동시험을 이용한 고속열차의 유동 상부경계층 측정 및 분석)

  • Oh, Hyuck Keun;Kwon, Hyeok-bin;Kwak, Minho;Kim, Seogwon;Park, Choonsoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • The flows around a high speed train are very important because they could affect the aerodynamic characteristics such as drag and acoustic noise. Especially the boundary layer of flows could represent the characteristic of flows around the high speed train. Most previous studies have focused on the boundary layer region along the train length direction for the side of the train and underbody. The measurement and analysis of the boundary layer for the roof side is also very important because it could determine the flow inlet condition for the pantograph. In this study, the roof boundary layer was measured with a 1/20 scaled model of the next generation high speed train, and the results were compared with full-scaled computational fluid dynamics results to confirm their validity. As a result, it was confirmed that the flow inlet condition for the pantograph is about 85% of the train speed. Additionally, the characteristics of the boundary layer, which increases along the train direction, was also analyzed.

Investigation of Radio Communications-based Train Control System with Interoperability (무선통신기반 열차제어시스템 상호운영성 연구)

  • Choi, June-Young;Park, Jae-Young
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • This paper analyzes the hazard related to train control, the functional requirements for atrain control system(TCS) and the automatic train protection(ATP) functional allocation that ensures the interoperability of a radio communications-based TCS. In addition, the interoperability can be obtained using wireless communications technology standards and standardized functional allocations of TCS performed on the wayside and onboard. Using this information, an integrated operating system for a rail network can be constructed. The functional allocations of TCS that support interoperability, require hazard analysis of TCS and definition of the system requirements. The hazard factors for a TCS are confirmed through setting the train safety space control and train speed limit excess. Furthermore, this paper determines the impact of the hazard factors on the TCS and, defines the functional requirements for the TCS subsystems and the ATP wayside and onboard functional allocations.

Test and Evaluation of Performances of Korea High Speed Train (한국형 고속열차 성능 시험 및 평가)

  • 박춘수;김기환;서승일;김석원
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.279-281
    • /
    • 2004
  • 고속열차는 세계철도협회(UIC)에서 정의하기를 "시속 250km 이상으로 상업운행하는 열차" 라고 한다 새로이 건설된 고속선로에서 고속열차가 운행하는 국가는 일본(64년) 프랑스(81년) 독일(91년) 스페인(92년)과 지난 4월 1일 고속철도가 개통된 우리나라이다. (중략)

  • PDF

Traffic Safety & Passenger Comforts of a Suspension Bridge Considering Seismic Loads (고속열차 주행 시 지진하중을 고려한 현수교의 주행안전성 및 승차감 분석)

  • Kim, Sung-Il;Kim, Dong-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.57-65
    • /
    • 2011
  • The estimation of traffic safety and passenger comfort when the train is running on the bridge is a estimation unique to the railway bridge. The standards for such estimation are included in the Eurocode, the Shinkansen design criteria, and the design guideline of the Honam High-speed railway. The items are bridge responses including vertical displacement of bridge, vertical acceleration, and slab twist. In principle, a direct estimation based on the train responses has to take place. However, the estimation based on the bridge responses can be seen as an indirect estimation procedure for the convenience of the bridge designer. First, it is general practice that traffic safety can be verified as a derailment coefficient or wheel load decrement The general method of estimating passenger comfort is to calculate the acceleration within the train car-body. Various international indexes have been presented for this method. In the present study, traffic safety and passenger comforts are estimated directly by bridge/train interaction analysis. The acceleration and wheel load decrement are obtained for the estimation of traffic safety and passenger comforts of a suspension bridge which has main span length of 300m. Also, the consideration of seismic load with simultaneous action of moving train is done for bridge/train/earthquake interaction analysis.

Train Crowdedness Analysis Model for the Seoul Metropolitan Subway : Considering Train Scheduling (열차운행계획을 반영한 수도권 도시철도 열차 혼잡도 분석모형 연구)

  • Lee, Sangjun;Yun, Seongjin;Shin, Seongil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.1-17
    • /
    • 2022
  • Accurate analysis of the causes of metro rail traffic congestion provides a means of addressing issues arising from metro rail traffic congestion in metropolitan areas. Currently, congestion analysis based on counting, weight detection, CCTVs, and mobile Wi-Fi is limited by poor accuracies or because studies have been restricted to single routes and trains. In this study, a train congestion analysis model was used that includes the transfer and multi-path behavior of metro passengers and train operation plans for metropolitan urban railroads. Analysis accuracy was improved by considering traffic patterns in which passengers must wait for next trains due to overcrowding. The model updates train crowding levels every 10 minutes, provides information to potential passengers, and thus, is expected to increase the social benefits provided by the Seoul metropolitan subway