• 제목/요약/키워드: 1″ micro storage

검색결과 163건 처리시간 0.024초

FE모델을 사용하여 램프상의 로드-언로드 동적특성에 대한 해석 (Analysis of Dynamic Characteristics on the L/UL Ramp Using Advanced FE Model)

  • 정문교;박경수;박노철;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.413-418
    • /
    • 2004
  • Recently, the development of mobile devices demands information storage systems to use micro drive devices. 1-inch micro drive hard disk uses the load/unload(L/UL) technology to increase area recording density and reduce power consumption. Because micro drive has light actuator, effects of the flexible cable that is ignored in 3.5-inch hard disk drive is important to load/unload performances. In this paper, effects of flexible cable on load/unload performances are studied.

  • PDF

A Stable Black-Start Strategy for a Stand-Alone DC Micro-Grid

  • Cha, Jae-Hun;Han, Yoon-Tak;Park, Kyung-Won;Oh, Jin-Hong;Choi, Tae-Seong;Ko, Jae-Hun;MAHIRANE, Philemon;An, Jae-Yun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.30-37
    • /
    • 2018
  • Unlike an AC system, a DC system does not cause problems with synchronization, stability, reactive power, system losses, and cost. However, more research is still required for the application of DC Systems. This paper proposes a stable black-start strategy for a stand-alone DC micro-grid, which consists of an energy storage system, photovoltaic generator, wind-turbine generator, diesel generator, and DC loads. The proposed method is very important for avoiding inrush current and transient overvoltage in the power system equipment during restoration after a blackout. PSCAD/EMTDC software was used to simulate, analyze, and verify the method, which was found to be stable and applicable for a stand-alone DC micro-grid.

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

  • Jeon, Yukwon;Kwon, Ohchan;Ji, Yunseong;Jeon, Ok Sung;Lee, Chanmin;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.425-431
    • /
    • 2019
  • As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.

Hydrogen storage capacity of highly porous carbons synthesized from biomass-derived aerogels

  • Choi, Yong-Ki;Park, Soo-Jin
    • Carbon letters
    • /
    • 제16권2호
    • /
    • pp.127-131
    • /
    • 2015
  • In this work, highly porous carbons were prepared by chemical activation of carbonized biomass-derived aerogels. These aerogels were synthesized from watermelon flesh using a hydrothermal reaction. After carbonization, chemical activation was conducted using potassium hydroxide to enhance the specific surface area and microporosity. The micro-structural properties and morphologies were measured by X-ray diffraction and scanning electron microscopy, respectively. The specific surface area and microporosity were investigated by $N_2$/77 K adsorption-desorption isotherms using the Brunauer-Emmett-Teller method and Barrett-Joyner-Halenda equation, respectively. Hydrogen storage capacity was dependent on the activation temperature. The highest capacity of 2.7 wt% at 77 K and 1 bar was obtained with an activation temperature of $900^{\circ}C$.

Absorption of d-Limonene in Orange Juice into a Laminated Food Package Studied with a Solid Phase Micro-extraction Method

  • Lee, Hahn-Bit;Yang, Hee-Jae;Min, Sea-C.
    • 산업식품공학
    • /
    • 제14권4호
    • /
    • pp.354-358
    • /
    • 2010
  • The methods for determining the diffusion parameters for the diffusion of d-limonene, a major volatile compound of orange juice, through a multi-layered food packaging material and predicting its absorption into the packaging material have been investigated. The packaging material used was the 1.5-mm thick multi-layered packaging material composed of high impact polystyrene (HIPS), polyvinylidene chloride (PVDC), and low density polyethylene (LDPE). Orange juice was placed in a cell where volatiles were absorbed in the sample package and kept at $23{\pm}2^{\circ}C$ for 72 hr. The d-limonene absorbed in a 1.5-mm thick multi-layered food packaging material was analyzed by a solid phase micro-extraction (SPME). The absorption parameters for the absorption of d-limonene in the packaging material were determined and absorption of d-limonene into the packaging material was predicted using absorption storage data. The SPME desorption at $60^{\circ}C$ for 1 hr resulted in the most sensitive and reproducible results. The diffusion coefficients of d-limonene in the packaging material and the partition coefficient at $23{\pm}2^{\circ}C$ were approximately $1-2{\times}10^{12}m^2$/s and 0.03, respectively. The absorption profile no earlier than 30 hr was fit well by a model derived from the Fick's law.

SAN 환경에서 공유 디스크 파일 시스템을 위한 전역 버퍼 관리자 (A Global Buffer Manager for a Shared Disk File System in SAN Clusters)

  • 박선영;손덕주;신범주;김학영;김명준
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제10권2호
    • /
    • pp.134-145
    • /
    • 2004
  • 네트워크를 통해 전송되는 데이타의 양이 급속히 증가함에 따라 확장성 있는 저장 시스템에 대한 사용자 요구가 증가하고 있다. 네트워크 연결형 자료 저장 시스템인 SAN(Storage Area Network)은 호스트와 디스크를 광채널 스위치로 연결하는 구조로서 저장 공간과 서버에 대한 확장성을 제공한다. SAN 환경에서는 다수의 호스트가 네트워크에 연결된 저장 장치를 공유하므로 공유 데이타에 대한 일관성 유지가 필요하다. 이를 위해 각 호스트가 수정한 데이타를 즉시 디스크에 반영하는 방법을 사용하고 있지만 이는 느린 디스크 접근 시간(Disk Access Time)으로 인해 시스템의 성능을 저하시키는 요인이 된다. 본 논문에서는 필요한 공유 데이타를 다른 호스트의 메모리를 통해서 직접 전송 받을 수 있도록 하여 공유 데이타의 접근 속도를 향상시킬 수 있는 전역 버퍼 관리자의 설계와 구현에 대해 소개한다. SANtopia 전역 버퍼 관리자는 SAN에 연결된 호스트들이 서로의 버퍼 캐시를 공유하도록 함으로써 블록 데이타로의 빠른 접근을 가능하게 한다. 마이크로 벤치마크를 통한 블록 단위 I/O의 성능 측정 결과, 전역 버퍼 관리자를 사용하는 것이 기존의 디스크 I/O를 사용하는 방법에 비해 약 1.8-12.8배 정도 빠른 성능을 보였으며 파일 시스템 벤치마크를 통한 성능 측정 결과. 전역 버퍼 관리자를 사용한 SANtopia 파일 시스템은 사용하지 않은 것과 비교해서 디렉터리 파일 시스템 콜의 경우 약 1.06배 정도 빠르고 일반 파일시스템 콜은 약 1.14배 정도 빠른 성능을 보였다.

독립형 태양광 발전소의 연 축전지 모니터링장치 개발 (A Monitoring Unit for Lead Storage Batteries in Stand Alone PV Generation Systems)

  • 문채주;김태곤;장영학;김의선;임정민
    • 한국태양에너지학회 논문집
    • /
    • 제29권2호
    • /
    • pp.1-7
    • /
    • 2009
  • Use of the PV(photovoltaic) generation system is increased in such areas as remote mountain places or islands at which electrical energy is not serviced. The stand alone PV system is required the power storage products such as battery, fly wheel and super capacitor. Several lead storage batteries are connected in series to get high voltages. The life of lead storage battery is shortened when over charge or over discharge takes place. So, it is needed to control batteries not to be overcharged or be discharged deeply. Voltage of each battery was ignored in former control methods in which overall voltage was used to control charge or discharge battery. In this study, the charging and discharging voltage variations of sealed lead storage batteries with l2V/l.2A were investigated step by step experiments. The results of the test show that one should consider and specify the state of each battery to prevent overcharge or deep discharge. With the basis of the experiments, we designed a monitoring unit to monitor battery voltages simultaneously using micro-controller. The unit measures voltage of 20 batteries simultaneously and displays data on the color LCD monitor with curved line graph. It also sends data to PC using the RS232C communication port. The designed unit was adapted to stand alone PV system with 1kW capacity and lead storage batteries are connected to the PV generation system. The number of lead storage batteries was 10 in series and 12V/250Ah each. Resistive load with 3kW was used for discharging.

가파도 마이크로 그리드에서의 카본 프리(Carbon-Free)를 위한 1MVA급 배터리 에너지 저장시스템 적용 및 실증 (The Application and Verification of the 1MVA Battery Energy Storage System for Carbon-Free in Micro-Grid of Gapa Island)

  • 서영거;손의권;정병창;이정민;최영준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 추계학술대회 논문집
    • /
    • pp.93-94
    • /
    • 2014
  • 본 논문의 주제는 가파도 마이크로 그리드에 적용한 1MVA급 배터리 에너지 저장시스템(BESS-Battery Energy Storage System)을 소개하는 것이다. 에너지 저장장치가 디젤발전기와의 연계 및 독립운전 하여 탄소 배출 없이(Carbon-Free) 가파도 전체 부하에 전원을 공급하는 실증 사례를 살핀다.

  • PDF

Ti-Cr-V 합금의 수소화-탈수소화에 따른 상천이 및 열처리에 의한 수소저장특성의 향상 (Structural transition of Ti-Cr-V alloys with hydrogenation and dehydrogenation and the improvement of their hydrogen storage properties by heat treatment)

  • 유정현;조성욱;심건주;최국선;박충년;최전
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.125-132
    • /
    • 2006
  • The alloys which compositions were represented by the formula, $Ti_{(0.22+X)}Cr_{(0.28+1.5X)}V_{(0.5-2.5X)}$ ($0{\leq}X{\leq}0.12$), had the total hydrogen storage capacity higher than 3 wt% and the effective hydrogen storage capacity higher than 1.4 wt%. Particularly, among all the tested alloys, the $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy exhibited the best effective hydrogen storage capacity of 1.65 wt%. Furthermore, the reversible bcc${\leftrightarrow}$fcc structural transition was observed with hydrogenation and dehydrogenation, which predicted the possibility of pressure cycling. EDS analysis revealed micro-segregation, which suggested the necessity of microstructure homogenization by heat treatment. The $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy was selected for heat treatment and for other related studies. The results showed that the total and the effective hydrogen storage capacity increased to 3.7 wt% and 2.3 wt%, respectively. The flatness of the plateau region was also greatly improved and heat of hydride formation was determined to be approximately -36 kJ/mol $H_2$.

Smart Grid-The next Generation Electricity Grid with Power Flow Optimization and High Power Quality

  • Hu, Jiefeng;Zhu, Jianguo;Platt, Glenn
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.425-433
    • /
    • 2012
  • As the demand for electric power increases rapidly and the amount of fossil fuels decreases year by year, making use of renewable resources seem very necessary. However, due to the discontinuous nature of renewable resources and the hierarchical topology of existing grids, power quality and grid stability will deteriorate as more and more distributed generations (DGs) are connected to the grids. It is a good idea to combine local utilization, local consumption, energy storage and DGs to form a grid-friendly micro grid, these micro grids can then assembled into an intelligent power system - the smart Grid. It can optimize power flow and integrate power generation and consumption effectively. Most importantly, the power quality and grid stability can be improved greatly. This paper depicts how the smart grid addresses the current issues of a power system. It also figures out the key technologies and expectations of the smart grid.