• Title/Summary/Keyword: 1/4-rate 위상검출기

Search Result 12, Processing Time 0.024 seconds

Clock and Date Recovery Circuit Using 1/4-rate Phase Picking Detector (1/4-rate 위상선택방식을 이용한 클록 데이터 복원회로)

  • Jung, Ki-Sang;Kim, Kang-Jik;Cho, Seong-Ik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.82-86
    • /
    • 2009
  • This work is design of clock and data recovery circuit using system clock. This circuit is composed by PLL(Phase Locked Loop) to make system clock and data recovery circuit. The data recovery circuit using 1/4-rate phase picking Detector helps to reduce clock frequency. It is advantageous for high speed PLL. It can achieve a low jitter operation. The designed CDR(Clock and data recovery) has been designed in a standard $0.18{\mu}m$ 1P6M CMOS technology and an active area $1{\times}1mm^2$.

Dual-Mode Reference-less Clock Data Recovery Algorithm (이중 모드의 기준 클록을 사용하지 않는 클록 데이터 복원 회로 알고리즘)

  • Kwon, Ki-Won;Jin, Ja-Hoon;Chun, Jung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.77-86
    • /
    • 2016
  • This paper describes a dual-mode reference-less CDR(Clock Data Recovery) operating at full / half-rate and its operation algorithm. Proposed reference-less CDR consists of a frequency detector, a phase detector, a charge pump, a loop filter, a voltage controlled oscillator, and a digital block. The frequency and phase detectors operate at both full / half-rate for dual-mode operation and especially the frequency detector is capable of detecting the difference between data rate and clock frequency in the dead zone of general frequency detectors. Dual-mode reference-less CDR with the proposed algorithm can recover the data and clock within 1.2-1.3 us and operates reliably at both full-rate (2.7 Gb/s) and half-rate (5.4 Gb/s) with 0.5-UI input jitter.

3.125Gbps Reference-less Clock and Data Recovery using 4X Oversampling (4X 오버샘플링을 이용한 3.125Gbps급 기준 클록이 없는 클록 데이터 복원 회로)

  • Jang, Hyung-Wook;Kang, Jin-Ku
    • Journal of IKEEE
    • /
    • v.10 no.1 s.18
    • /
    • pp.10-15
    • /
    • 2006
  • In this paper, a clock and data recovery (CDR) circuit for a serial link with a half rate 4x oversampling phase and frequency detector structure without a reference clock is described. The phase detector (PD) and frequency detector (FD)are designed by 4X oversampling method. The PD, which uses bang-bang method, finds the phase error by generating four up/down signal and the FD, which uses the rotational method, finds the frequency error by generating up/down signal made by the PD output. And the six signals of the PD and the FD control an amount of current that flows through the charge pump. The VCO composed of four differential buffer stages generates eight differential clocks. Proposed circuit is designed using the 0.18um CMOS technology and operating voltage is 1.8V. With a 4X oversampling PD and FD technique, tracking range of 24% at 3.125Gbps is achieved.

  • PDF

A 3.2Gb/s Clock and Data Recovery Circuit without Reference Clock for Serial Data Communication (시리얼 데이터 통신을 위한 기준 클록이 없는 3.2Gb/s 클록 데이터 복원회로)

  • Kim, Kang-Jik;Jung, Ki-Sang;Cho, Seong-Ik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.72-77
    • /
    • 2009
  • In this paper, a 3.2Gb/s clock and data recovery (CDR) circuit for a high-speed serial data communication without the reference clock is described This CDR circuit consists of 5 parts as Phase and frequency detector(PD and FD), multi-phase Voltage Controlled-Oscillator(VCO), Charge-pumps (CP) and external Loop-Filter(KF). It is adapted the PD and FD, which incorporates a half-rate bang-bang type oversampling PD and a half-rate FD that can improve pull-in range. The VCO consists of four fully differential delay cells with rail-to-rail current bias scheme that can increase the tuning range and tuning linearity. Each delay cell has output buffers as a full-swing generator and a duty-cycle mismatch compensation. This materialized CDR can achieve wide pull-in range without an extra reference clock and it can be also reduced chip area and power consumption effectively because there is no additional Phase Locked- Loop(PLL) for generating reference clock. The CDR circuit was designed for fabrication using 0.18um 1P6M CMOS process and total chip area excepted LF is $1{\times}1mm^2$. The pk-pk jitter of recovered clock is 26ps at 3.2Gb/s input data rate and total power consumes 63mW from 1.8V supply voltage according to simulation results. According to test result, the pk-pk jitter of recovered clock is 55ps at the same input data-rate and the reliable range of input data-rate is about from 2.4Gb/s to 3.4Gb/s.

Circuit Design for Digital Random Bit Synchronization (디지틀 랜덤 비트 동기 회로 설계)

  • 오현서;박상영;백창현;이홍섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.787-795
    • /
    • 1994
  • In this paper, we have proposed a bit synchronization algorithm which extracts the synchronized clock for random NRZ signal and designed a circuit followed by its performance analysis. The synchronization circuit consists of the Data Transition Detector and Mod 64 Counter, Phase Comparison and Controller, 64 Divider. The data input rate and master clock rate are 16 Kbps and 4.096MHz, respectively. The phase is compensated by 1/64 of the data signal period for every data bit. Through a series of experiments, the maximum immunity of phase jiter for input signal and the deviation of the recovered clock are measured 23.8% and 1.6%, respectively. The fully digital synchronization circuit is simple to implement into signal IC chip and also effective for the low speed digital mobile communications.

  • PDF

Design of a 0.18$\mu$m CMOS 10Gbps CDR With a Quarter-Rate Bang-Bang Phase Detector (Quarter-Rate Bang-Bang 위상검출기를 사용한 0.18$\mu$m CMOS 10Gbps CDR 회로 설계)

  • Cha, Chung-Hyeon;Ko, Seung-O;Seo, Hee-Taek;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.118-125
    • /
    • 2009
  • With recent advancement of high-speed, multi-gigabit data transmission capabilities, transmitters usually send data without clock signals for reduction of hardware complexity, power consumption, and cost. Therefore clock and data recovery circuits(CDR) become important to recover the clock and data signals and have been widely studied. This paper presents the design of 10Gbps CDR in 0.18$\mu$m CMOS process. A quarter-rate bang-bang phase detector is designed to reduce the power and circuit complexity, and a 4-stage LC-type VCO is used to improve the jitter characteristics. Simulation results show that the designed CDR consumes 80mW from a 1.8V supply, and exhibits a peak-to-peak jitter of 2.2ps in the recovered clock. The chip layout area excluding pads is 1.26mm$\times$1.05mm.

  • PDF

The Analysis of Amplitude and Phase Image for Acoustic Microscope Using Quadrature Technique (쿼드러춰 방식에 의한 초음파현미경의 진폭과 위상영상 분석)

  • Kim, Hyun;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.55-61
    • /
    • 1999
  • In this study, we have constructed the acoustic microscope using quadrature technique and analyzed the relative variation of image intensity and the quality of image by reconstructing the amplitude and phase image for surface defects with tiny hight variation. In this experiment, we have constructed the scanning acoustic microscope using the focused transducer with 3㎒ center frequency and the quadrature detector. And we have fabricated aluminum samples with round defects whose depth is different and reconstructed the amplitude and phase images for the samples. One sample has round defects with 2㎜ diameter and 100㎛ depth and the other has round defects with 4㎜ diameter and 5㎜ depth. In the result of line scanning for the sample with 100㎛ round defects, it has been shown that the variation rate of amplitude image intensity is 7% and the variation rate of phase image intensity is 89%. The phase image has better contrast than amplitude image for the sample. In contrast to this, the amplitude image has better contrast than phase image for the sample with 5㎜ depth's defects. Accordingly there is big difference between amplitude image and phase image for depth variation of defects whose boundary is 1 wavelength. Consequently the acoustic microscope using quadrature detector can be evaluated efficiently more than using envelope detector, for detecting defects which have height variation less than 1 wavelength. And also the phase image and the amplitude image can be used for detecting defects of tiny height variation with complimentary relation.

  • PDF

A 5.4Gb/s Clock and Data Recovery Circuit for Graphic DRAM Interface (그래픽 DRAM 인터페이스용 5.4Gb/s 클럭 및 데이터 복원회로)

  • Kim, Young-Ran;Kim, Kyung-Ae;Lee, Seung-Jun;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.19-24
    • /
    • 2007
  • With recent advancement of high-speed, multi-gigabit data transmission capabilities, serial links have been more widely adopted in industry than parallel links. Since the parallel link design forces its transmitter to transmit both the data and the clock to the receiver at the same time, it leads to hardware's intricacy during high-speed data transmission, large power consumption, and high cost. Meanwhile, the serial links allows the transmitter to transmit data only with no synchronized clock information. For the purpose, clock and data recovery circuit becomes a very crucial key block. In this paper, a 5.4Gbps half-rate bang-bang CDR is designed for the applications of high-speed graphic DRAM interface. The CDR consists of a half-rate bang-bang phase detector, a current-mirror charge-pump, a 2nd-order loop filter, and a 4-stage differential ring-type VCO. The PD automatically retimes and demultiplexes the data, generating two 2.7Gb/s sequences. The proposed circuit is realized in 66㎚ CMOS process. With input pseudo-random bit sequences (PRBS) of $2^{13}-1$, the post-layout simulations show 10psRMS clock jitter and $40ps_{p-p}$ retimed data jitter characteristics, and also the power dissipation of 80mW from a single 1.8V supply.

A Clock and Data Recovery Circuit using Quarter-Rate Technique (1/4-레이트 기법을 이용한 클록 데이터 복원 회로)

  • Jeong, Il-Do;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.130-134
    • /
    • 2008
  • This paper presents a clock and data recovery(CDR) using a quarter-rate technique. The proposed CDR helps reduce the VCO frequency and is thus advantageous for high speed application. It can achieve a low jitter operation and extend the pull-in range without a reference clock. The CDR consists of a quarter-rate bang-bang type phase detector(PD) quarter-rate frequency detector(QRFD), two charge pumps circuits(CPs), low pass filter(LPF) and a ring voltage controlled oscillator(VCO). The Proposed CDR has been fabricated in a standard $0.18{\mu}m$ 1P6M CMOS technology. It occupies an active area $1{\times}1mm^2$ and consumes 98 mW from a single 1.8 V supply.

40Gb/s Clock and Data Recovery Circuit with Multi-phase LC PLL in CMOS $0.18{\mu}m$ (LC형 다중 위상 PLL 이용한 40Gb/s $0.18{\mu}m$ CMOS 클록 및 데이터 복원 회로)

  • Ha, Gi-Hyeok;Lee, Jung-Yong;Kang, Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.36-42
    • /
    • 2008
  • 40Gb/s CMOS Clock and Data Recovery circuit design for optical serial link is proposed. The circuit generates 8 multiphase clock using LC tank PLL and controls the phase between the clock and the data using the $2{\times}$ oversampling Bang-Bang PD. 40Gb/s input data is 1:4 demultiplexed and recovered to 4 channel 10Gb/s outputs. The design was progressed to separate the analog power and the digital power. The area of the chip is $2.8{\times}2.4mm^2$ for the inductors and the power dissipation is about 200mW. The chip has been fabricated using 0.18um CMOS process. The measured results show that the chip recovers the data up to 9.5Gb/s per channel(Equivalent to serial input rate of up to 38Gb/s).