• Title/Summary/Keyword: 1/3 frequency band

Search Result 1,278, Processing Time 0.033 seconds

Design and Implementation of UWB BPFs (UWB BPF의 설계 및 구현)

  • Kang, Sang-Gee;Lee, Jae-Myung;Hong, Sung-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.815-820
    • /
    • 2008
  • Recently the frequency assignment and the technical specifications of UWB systems for communications are completed. Therefore many UWB systems have been developed. In our country $3.1{\sim}4.8GHz$ and $7.2{\sim}10.2GHz$ are assigned for UWB systems for communications. When we consider RF technologies and the easy implementation of UWB systems, UWB systems used in the low band are more developed than high band systems. In this paper we design and implement a BPF for low band UWB systems by means of considering the easy implementation of UWB systems. The designed and implemented BPFs are low band filter and low band channel filters. The measured results of the low band filter show that the filter has 21.85dB and 17.91dB attenuation at 3.1GHz and 4.8GHz, 1.53GHz of -10dB bandwidth and 2dB of insertion loss. Low band can be divided into 3 channels with 500MHz of the channel bandwidth. The channel filter for channel number 1 has the characteristics of 24.85dB attenuation at 3.1GHz, 0.61GHz of -10dB bandwidth and 1.87dB of insertion loss. The filter for channel 3 in low band has 19.2dB of attenuation at 4.8GHz, 0.49GHz of -10dB bandwidth and 2.49dB of insertion loss.

Design of Wide band folded monopole slot antenna for 3G/4G/5G/Wi-Fi(dual band) services (3G/4G/5G/Wi-Fi(이중대역)용 광대역 모노폴 슬롯 안테나 설계)

  • Shin, Dong-Gi;Lee, Yeong-Min;Lee, Young-Soon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.127-134
    • /
    • 2022
  • A modified folded monopole slot antenna for 3G WCDMA (1.91 ~ 2.17 GHz), 4G LTE (2.17 ~ 2.67 GHz), 3.5 GHz 5G (3.42 ~ 3.7 GHz) and Wi-Fi dual band (2.4 ~ 2.484 GHz / 5.15 ~ 5.825 GHz) was proposed for the first time. The proposed antenna is designed and fabricated on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of 35 × 60 mm2. The measured impedance bandwidth of the proposed antenna is 2910 MHz(1.84 ~ 4.75 GHz) and 930 MHz(5.11 ~ 6.04 GHz), antenna gain in each frequency band is from 1.811 to 3.450 dBi. In particular, it was possible to obtain a commercially suitable omni-directional radiation pattern in all frequency bands of interest.

Design of Triple-band Triple Dipole Quasi-Yagi Antenna for WLAN and WiMAX Applications (무선 랜과 WiMAX 응용을 위한 삼중 대역 삼중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, the design of a triple dipole quasi-yagi antenna operating in the 2.45 GHz and 5 GHz wireless LAN frequency bands and the 3.5 GHz WiMAX frequency band was studied. The proposed quasi-Yagi antenna consists of three dipoles connected in series with a V-shaped ground plane. The longest half-bow-tie-shaped dipole resonates in the 2.45 GHz band, whereas the medium-length dipole resonates at 3.5 GHz. The shortest dipole resonates in the 5 GHz band. By adjusting the length and width of the dipoles and the spacings between the dipoles, a triple-band directional antenna operating in the 2.45 GHz, 3.5 GHz, and 5 GHz bands are designed, and fabricated on an FR4 substrate with a size of 45 mm × 55 mm. It was confirmed that the fabricated antenna operates in the designed triple bands of 2.32-2.57 GHz, 3.26-3.69 GHz, and 4.50-6.56 GHz for a voltage standing wave ratio less than 2. Gain is maintained above 3 dBi in the three bands.

Front-End Module of 18-40 GHz Ultra-Wideband Receiver for Electronic Warfare System

  • Jeon, Yuseok;Bang, Sungil
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.188-198
    • /
    • 2018
  • In this study, we propose an approach for the design and satisfy the requirements of the fabrication of a small, lightweight, reliable, and stable ultra-wideband receiver for millimeter-wave bands and the contents of the approach. In this paper, we designed and fabricated a stable receiver with having low noise figure, flat gain characteristics, and low noise characteristics, suitable for millimeter-wave bands. The method uses the chip-and-wire process for the assembly and operation of a bare MMIC device. In order to compensate for the mismatch between the components used in the receiver, an amplifier, mixer, multiplier, and filter suitable for wideband frequency characteristics were designed and applied to the receiver. To improve the low frequency and narrow bandwidth of existing products, mathematical modeling of the wideband receiver was performed and based on this spurious signals generated from complex local oscillation signals were designed so as not to affect the RF path. In the ultra-wideband receiver, the gain was between 22.2 dB and 28.5 dB at Band A (input frequency, 18-26 GHz) with a flatness of approximately 6.3 dB, while the gain was between 21.9 dB and 26.0 dB at Band B (input frequency, 26-40 GHz) with a flatness of approximately 4.1 dB. The measured value of the noise figure at Band A was 7.92 dB and the maximum value of noise figure, measured at Band B was 8.58 dB. The leakage signal of the local oscillator (LO) was -97.3 dBm and -90 dBm at the 33 GHz and 44 GHz path, respectively. Measurement was made at the 15 GHz IF output of band A (LO, 33 GHz) and the suppression characteristic obtained through the measurement was approximately 30 dBc.

A Dual-Band Compact Folded Patch Antenna (이중 대역 소형 평면 패치 안테나)

  • 김태영;정종호;박동국;박익모
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • In this paper we proposed a novel dual-band compact folded patch antenna with the same linear polarizations and high isolation characteristic between the two frequency range. The antenna is loaded with a high permittivity dielectric material in order to reduce the antenna size and open circuit stubs are used in order to broaden the bandwidth. The fractional bandwidths of the optimized antenna with demensions 4 mm${\times}$3 mm${\times}$5 mm are 3.0 % at 5.6 GHz band and 2.8 % at 5.8 GHz band, respectively. The isolation characteristic between the two ports is less than -26 dB within the operating frequency range.

A Study on the Realization of Broadband frequency Multiple VCO for Multi-Band Radar Detector (다중 대역 레이더 탐지기용 광대역 주파수 체배 VCO 구현에 관한 연구)

  • Park Wook-Ki;Kang Suk-Youb;Go Min-Ho;Park Hyo-Dal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.971-978
    • /
    • 2005
  • In this paper, we design and fabricate a VCO(Voltage Controlled Oscillator) for radar detector of X/K/Ka band using frequency multiplier. The existing VCO operated in radar detector have many Problems such as narrow bandwidth, slow frequency variable rate, unstable of production due to high frequency. So we design and fabricate a VCO improved such problems using frequency multiplier. As a result of measure, investigated frequency multiple VCO show its output power 3.64 dBm at multiplied operating frequency 11.27 GHz and have wide frequency tuning range of 660 MHz by controlled voltage 0V to 4.50 V applied diode. And also its phase noise is -104.0 dEc at 1 MHz offset frequency so we obtain suitable performance for commercial use.

Quadruple Band-Notched Trapezoid UWB Antenna with Reduced Gains in Notch Bands

  • Jin, Yunnan;Tak, Jinpil;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • A compact ultra-wide band antenna with a quadruple band-notched characteristic is proposed. The proposed antenna consists of a slotted trapezoid patch radiator, an inverted U-shaped band stop filter, a pair of C-shaped band stop filters, and a rectangular ground plane. To realize the quadruple notch-band characteristic, a U-shaped slot, a complementary split ring resonator, an inverted U-shaped band stop filter, and two C-shaped band stop filters are utilized in this antenna. The antenna satisfies the -10 dB reflection coefficient bandwidth requirement in the frequency band of 2.88-12.67 GHz, with a band-rejection characteristic in the WiMAX (3.43-3.85 GHz), WLAN (5.26-6.01 GHz), X-band satellite communication (7.05-7.68 GHz), and ITU 8 GHz (8.08-8.87 GHz) signal bands. In addition, the proposed antenna has a compact volume of $30mm{\times}33.5mm{\times}0.8mm$ while maintaining omnidirectional patterns in the H-plane. The experimental and simulated results of the proposed antenna are shown to be in good agreement.

Analysis of Interference Impact of UWB System on WiBro System (UWB 시스템에 의한 WiBro 시스템에서의 간섭영향에 관한 연구)

  • Yoon Young-Keun;Hong Heon-Jin;Lee Il-Kyoo;Choi Ik-Guen;Kwak Kyung-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.814-819
    • /
    • 2006
  • This paper presents the impacts of Ultra Wide-Band(UWB) system applied in Indoor and Handhold communications using frequency band from 3.1 GHz to 10.6 GHz on Wireless Broad-band(WiBro) system based on Orthogonal Frequency Division Multiplexing(OFDM) using frequency of 2.3 GHz. The Minimum Coupling Loss(MCL) method for the case of single interference and Monte Carlo(MC) simulation for multiple interference considering practical scenario were used to evaluate the interference effects of UWB system on WiBro system. As a result, the minimum separation distance between single interferer and the victim receiver required 34.4 m and above to guarantee the co-existence. Also, the UWB transmitting PSD of around - 81 dBm / MHz below should be required to meet the minimum throughput loss of WiBro mobile station in case of multiple UWB interference.

Design of Dual Mode Amplifying Block Using Frequency Doubler (주파수 체배기를 이용한 이중 모우드 증폭부 설계)

  • Kang, Sung-Min;Choi, Jae-Hong;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.127-132
    • /
    • 2006
  • This paper presents a dual-mode amplifier which operates as amplifier or frequency multiplier according to the input frequency. It satisfies the 802.11a/b/g frequency band of wireless LAN standard. A conventional dual-band wireless LAN transmitter consists of the separating power amplifiers operating at each frequency band, but the proposed dual-mode amplifier operates as an amplifier for the 802.11b/g signal and as a frequency multiplier for the 802.11a signal according to each LAN bias condition. The amplifier mode shows the gain of 13dB, the PldB of 17dBm and second harmonic suppression of below -37dBc. And the frequency-doubler mode shows the gain of 3.3dB, the output power of 7.3dBm and third harmonic suppression of below -50dBr.

Dual Band Printed Monopole Antenna Using Spiral and Meander Structure (스파이럴과 미앤더 구조를 이용한 이중 대역 인쇄형 모노폴 안테나)

  • Cheong, Sae-Han-Sol;Jung, Jin-Woo;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.625-630
    • /
    • 2011
  • In this paper, spiral meander monopole printed antenna for dual band operation in GPS(1.57~1.577 GHz) and WiBro(2.3~2.4 GHz), WLAN(2.4~2.48 GHz) is proposed. Spiral(positive coupling) mounted end of monopole(small current) and meander mounted fed of monopole(big current) for reduce frequency ratio. Bandwidth(-10 dB) of the antenna is measured 130 MHz(1.49~1.62 GHz) in basic resonance frequency and 330 MHz(2.29~2.62 GHz) in harmonic resonance frequency($3{\lambda}_H/4$). The peak antenna gains are measured 2.86 dBi in GPS(1.57 GHz), and 3.49 dBi in WiBro(2.35 GHz), and 3.71 dBi in WLAN(2.44 GHz).