• Title/Summary/Keyword: 1,3-positional specificity

Search Result 7, Processing Time 0.019 seconds

Investigation of the Hydrolysis Characteristics of Fish Oil by Means of Aspergillus oryzae Lipase Lipolase-100T (Aspergillus oryzae 유래의 리파제 Lipolase-100T에 의한 물고기 기름의 가수분해 특성 규명)

  • 우동진;조귀준;허병기
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.259-263
    • /
    • 1999
  • Fish oil was hydrolyzed with Aspergillus oryzae lipase, Lipolase-100T. The hydrolysis characteristics of Lipolsae-100T were investigated. Lipolase-100T showed 1,3-positional specificity which hydrolyzed acyl chains combined on the 1 or 3 position of triglyceride into free fatty acids. Lipolase-100T represented another property that the saturated fatty acids composing the triglyceride were hydrolyzed more easily that the polyunsaturated fatty acids(PUFAs). n-3 PUFAs, such as C16:4, C20:5 and C22:6, were hardly hydrolyzed, so that the concentrations of those in the mixture of glycerides were increased according to hydrolysis time. Especially docosahexaenoic acid(DHA), C22:6 showed the highest increase in the concentration. This result explained that n-3 PUFAs were combined on 2-position of triglyceride. When the hydrolysis of fish oil with Lipolase-100T 0.4 wt% was performed for 120 hr, n-3 PUFAs wt% was increased to 50 wt% in the mixture of glycerides. This result was obtained due to the 1,3-positional specificity of Lipolase-100T and positional specificity of n-3 PUFAs.

  • PDF

The Mode of Action and the Positional Specificity of Trichoporon cutaneum Lipase (Trichosporon cutaneum Lipase의 작용기작(作用機作) 및 위치특이성(位置特異性))

  • Kim, Seung-Yeol;Lee, Chun-Yung
    • Applied Biological Chemistry
    • /
    • v.23 no.1
    • /
    • pp.52-57
    • /
    • 1980
  • This study was conducted to clarify the mode of action and the positional specificity of Trichosporon cutaneum lipase during the course of hydrolysis of triolein and monoolein mixture by thin-layer chromatography. 1. The hydrolytic activity of the lipase to oleyl glycerides was in the order of triolein>diolein>monoolein. 2. Both of triolein and diolein were hydrolyzed by the lipase at high and almost the same rate. 3. The hydrolysis of monoolein by the lipase was very slow compared to the other two oleyl glycerides. 4. This lipase appeared to have a very low specificity toward the outer chains of triolein.

  • PDF

Hydrolysis Mechanisms of Fish Oil by Lipolase-100T

  • HUR, BYUNG-KI;DONG-JIN WOO;CHONG-BO KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.624-630
    • /
    • 1999
  • In order to investigate the position of various fatty acids attached to glycerol and the specificity of Lipolase-100T, hydrolysis of fish oil was carried out with Lipolase-100T derived from Aspergillus oryzae. The amounts of free fatty acids produced from triglyceride, 1,2(2,3)-diglyceride, 1,3-diglyceride, and 2-monoglyceride and conversion rates of 1,2(2,3)-diglyceride to 1,3-diglyceride and 2-monoglyceride to 1(3)-monoglyceride were also calculated. The ratio of 1,2-diglyceride content to 1,3-diglyceride was higher than 70 in the early period of hydrolysis. The fatty acid content of the glyceride mixture after 72 h of hydrolysis was compared with that of fish oil, and it was found that polyunsaturated fatty acids such as C16:4, C20:4 n-3, C20:5 n-3, C21:5 n-3, C22:5 n-3 and C22:6 n-3 were located in the 2-position of glycerol. Material balance of each component in the hydrolysis system was written to obtain a set of simultaneous linear equations. The theoretical quantity of free fatty acids produced from triglyceride, 1,2-diglyceride, 1,3-diglyceride, and monoglyceride, respectively, were calculated by solving the linear equation system. The conversion rate of 1,2(2,3)-diglyceride to 1,3-diglyceride and that of 2-monoglyceride to 1(3)-monoglyceride were also obtained. The results showed that the migration rate of 1,2(2,3)-diglyceride to 1,3-diglyceride was higher than the hydrolysis rate of 1,2(2,3)-diglyceride to 2-monoglyceride and the conversion rate of 2-monoglyceride to 1(3)-monoglyceride was extremely low.

  • PDF

Dual positional substrate specificity of rice allene oxide synthase-1: insight into mechanism of inhibition by type II ligand imidazole

  • Yoeun, Sereyvath;Rakwal, Randeep;Han, Oksoo
    • BMB Reports
    • /
    • v.46 no.3
    • /
    • pp.151-156
    • /
    • 2013
  • Phylogenetic and amino acid sequence analysis indicated that rice allene oxide synthase-1 (OsAOS1) is CYP74, and is clearly distinct from CYP74B, C and D subfamilies. Regio- and stereo-chemical analysis revealed the dual substrate specificity of OsAOS1 for (cis,trans)-configurational isomers of 13(S)- and 9(S)-hydroperoxyoctadecadienoic acid. GC-MS analysis showed that OsAOS1 converts 13(S)- and 9(S)-hydroperoxyoctadecadi(tri)enoic acid into their corresponding allene oxide. UV-Visible spectral analysis of native OsAOS1 revealed a Soret maximum at 393 nm, which shifted to 424 nm with several clean isobestic points upon binding of OsAOS1 to imidazole. The spectral shift induced by imidazole correlated with inhibition of OsAOS1 activity, implying that imidazole may coordinate to ferric heme iron, triggering a heme-iron transition from high spin state to low spin state. The implications and significance of a putative type II ligand-induced spin state transition in OsAOS1 are discussed.

Substrate Specificity of the Yeast Protein Tyrosine Phosphatase, PTP1, Overexpressed from an Escherichia coli Expression System

  • Kwon, Mi-Yun;Oh, Min-Su;Han, Jun-Pil;Cho, Hyeong-Jin
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.386-392
    • /
    • 1996
  • A Saccharomyces cerevisiae Protein Tyrosine Phosphatase, PTP1, was expressed from an Escherichia coli expression system and milligram quantities of active PTP1 were purified chromatographically. The substrate specificity of the recombinant PTP1 was probed using synthetic phosphotyrosine-containing peptides corresponding to the regulatory phosphorylation sites of the yeast MAP kinase homologues $Fus3_{176-186}$, $Kss1_{179-189}$, and $Hog1_{170-180}$. Peptide sequences derived from the MAP kinase homologues were chosen arbitrarily as starting points for sequence variation studies even though they are not likely to be candidates for physiological substrates of PTP1. Phosphotyrosyl-$Hog1_{170-180}$ peptide showed a $K_M$ value of 877 ${\mu}M$ and phosphorylated $Kss1_{179-189}$ and $Fus3_{176-186}$ peptides showed lower $K_M$ values of 74 ${\mu}M$ and 51 ${\mu}M$ each. To study the effect of sequence variations of the peptide, amino acids of the undecapeptide $Hog1_{170-180}$ (DPQMTGpYVSTR) were sequentially substituted by an alanine residue. More extensive variations of each amino acid revealed positional importance of each amino acid residue. Based on these results, we derived a peptide sequence (DADEpYDA) that is recognized by PTP1 with an affinity ($K_M$ is 4 ${\mu}M$) significantly higher than that of the peptides derived from the phosphorylation sites of Fus3, Kss1, and Hog1.

  • PDF

The Distribution and Position of Fatty Acids in Glycerides Hydrolyzed from Fish Oil by Lipase

  • Hur, Byung-Ki;Hu, Hong-Bo;Yun, Hyun-Shik
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.502-506
    • /
    • 2000
  • In order to determine the position and the content of fatty acids sttached to glycerides and the migration degree of fatty acids in the migration reaction, fish oil was hydroyzed with lipolase-100T which was derived from Aspergillus oryzae. The content of fatty acids in the glyceride mixture was analyzed and compared with that of fish oil. The amounts of fatty acid in a 2-position and the migration degree of the fatty acid in 2,3-DG (diglyceride) and 2-MG (monolyceride) were carefully calculated. The results showed that approximately 95% (w/w) of DHA (docosahexanoic acid) and 65% of EPA(eicosapentaenoic acid) were attached to the 2-position of glycerides in fish oil. Approximately 87% (w/w) of DHA and 75% of EPA remained in 2,3-DG, and 88% of DHA and 65% of EPA in 2-MG were not involved in the migration reaction.

  • PDF

Modification of Palm Mid Fraction with Stearic Acid by Enzymatic Acidolysis Reaction (효소적 Acidolysis를 이용한 Stearic Acid 함유 팜중부유의 개질)

  • Jeon, Mi-Sun;Lee, Yun-Jeung;Kang, Ji-Hyun;Lee, Jeung-Hee;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.4
    • /
    • pp.479-485
    • /
    • 2009
  • The acidolysis was performed to produce structured lipid with palm mid fraction (PMF) and stearic acid for 7, 24, and 36 hr at $70^{\circ}C$. The reaction was catalyzed by lipozyme TLIM (immobilized lipase from Thermonyces lanuginosa, amount of 10% and 20% by weight of total substrates) in the shaking water bath. The reaction conditions for maximum incorporation of stearic acid on the structured lipid were obtained when molar ratio of PMF and stearic acid was 1:2; concentration of lipozyme TLIM was 20wt%; reaction temperature was $70^{\circ}C$; and reaction time was 36 hr. After reaction under this condition, incorporation of stearic acid in the structured lipid was obtained up to 36.3% while the major components of triacylglycerol were 1,2-dipalmitoyl-3-stearoylglycerol (PPS, 28.19 area%), 1-palmitoyl-2-oleoyl-3-stearoylglycerol (POS/PSO, 20.70 area%) and 1-palmitoyl-2,3-distearoylglycerol (PSS, 18.13 area%). However, the fatty acid composition at the sn-2 position suggested that the positional specificity of lipozyme TLIM was not observed due to the acyl migration.