• Title/Summary/Keyword: 1,2,4-trimethylbenzene

Search Result 23, Processing Time 0.019 seconds

Volatile Compounds Formed by Thermal Degradation of Ascidian Tunic Carotenoids (우렁쉥이 껍질 카로테노이드의 가열분해로 생성되는 휘발성 화합물의 특성)

  • Ho, Chi-Tang;Choi, Byeong-Dae
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.519-524
    • /
    • 1997
  • As an investigation for utilization of ascidian tunic carotenoids as a food color additives, we attempted to collect the volatile thermal degradation compounds from ascidian tunic carotenoids. Oxygenate volatile compounds were extracted by simultaneous distillation and extraction/concentration apparatus and analyzed by gas chromatography and mass spectrometery. Total 63 compounds were identified and some of them were caused by thermal degradation. They included 1,3,5-trimethylbenzene, 3,5,5-trimethyl-3-cyclohexen-1-ol, 3,5,5-trimethyl-3-cyclohexen-1-one, 1,1,2,3-tetramethyl-2-cyclohexen-5-ol, 1,1,2,3-tetramethyl-2-cyclohexen-5-one, 2,3,4,4-tetramethyl-6-hydroxy-2-cyclohexene-1-one, 1,2,3,8-tetrahydro-3,3,6-trimethyl-1-naphtol, dihydroacetinidolide, ${\beta}-ionone$, 2-(1,1,5-trimethyl-3-hydroxy-5-cyclohexen-6-yl)-1-tolylethene, 2,6-dimethyl-8-(1,1,5-trimethyl-3-hydroxy-5-cyclohexen-6-yl)-1,3,5-octatriene-7-yne. Proposed mechanism of formation of some compounds as thermal degradation products of ascidian tunic carotenoids are provided.

  • PDF

Characteristics of Atmospheric Concentrations of Volatile Organic Compounds at a Heavy-Traffic Site in a Large Urban Area (대도시 교통밀집지역 도로변 대기 중 휘발성유기화합물의 농도분포 특성)

  • 백성옥;김미현;박상곤
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.113-126
    • /
    • 2002
  • This study was carried out to evaluate the temporal (daily, weekly, and seasonal) variations of volatile organic compounds (VOCs) concentrations at a road-side site in a heavy-traffic central area of Metropolitan Taegu. Ambient air sampling was undertaken continuously for 14 consecutive days in each of four seasons from the spring of 1999 to the winter of 2000. The VOC samples were collected using adsorbent tubes, and were determined by thermal desorption coupled with GC/MS analysis. A total of 10 aromatic VOCs of environmental concern were determined, including benzene, toluene, ethylbenzene, m+p-xylenes, styrene, o-xylene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and naphthalene. Among 10 target VOCs, the most abundant compounds appeared to be toluene (1.5 ∼ 102 ppb) and xylenes (0.1 ∼ 114 ppb), while benzene levels were in the range of 0.3 ∼6 ppb. It was found that the general trends of VOC levels were significantly dependent on traffic conditions at the sampling site since VOC concentrations were at their maximum during rush hours (AM 7∼9 and PM 7 ∼9). However, some VOCs such as toluene, xylenes, and ethylbenzene were likely to be affected by a number of unknown sources other than vehicle exhaust, being attributed to the use of paints, and/or the evaporation of solvents used nearby the sampling site. In some instances, extremely high concentrations were found for these compounds, which can not be explained solely by the impact of vehicle exhaust. The results of this study may be useful for estimating the relative importance of different emission sources in large urban areas. Finally, it was suggested that the median value might be more desirable than the arithmetic mean as a representative value for the VOC data group, since the cumulative probability distribution (n=658) does not follow the normal distribution pattern.

Determination of Soil Washing Condition for Light Hydrocarbon Contaminated Soils (Light Hydrocarbon에 오염된 토양의 용매추출조건에 관한 연구)

  • Hwang, Keon-Joong;Atalay, Asmare
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.82-90
    • /
    • 1997
  • This study was conducted to establish an ideal condition for obtaining maximum extraction efficiencies using an array of soil types and under a wide variety of conditions. Nine characteristic compounds were studied: benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene, n-propylbenzene, 1,2,4-trimethylbenzene, and n-butylbenzene which were found in gasoline. Increasing the moisture content resulted in decreased recovery, and recovery of hydrocarbons from wet soils was significantly lower than from dry soils. For the batch extraction process, 4 hours of extraction time was sufficient to give optimum recovery of the contaminants. With methanol as an extraction solvent, maximum recovery time appeared to be reached quicker for BTEX components than with 2-propanol. The 2 to 1 ratio of solvent/soil was chosen as a compromise to provide for the indicated minimum solvent use and high extraction efficiency. The 0.4 mg/g soil contamination was adequate to show quantitative recovery. The percent recovery of BTEX was concentration dependent more than the semivolatile compounds. Methanol and 2-propanol consistently gave higher efficiency than water. Methanol was superior to 2-propanol in removing contaminants from silty clay loam soil. Using the most efficient extraction procedure, the average recovery of the light hydrocarbons from the three soils was 66 percent. Recoveries were also dependent on soil type, solvent type, extraction time, solvent amount, contaminant concentration, and compounds volatility. This study provided a useful screening technique for procedures that can be used to remediate soils contaminated with light hydrocarbons.

  • PDF

Estimation on the Contribution of VOCs and Nitric Oxides in Creating Photochemical Ozone (휘발성유기화합물과 질소산화물의 오존생성 기여도 평가에 관한 연구)

  • Cheong, Jang-Pyo;You, Sook-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.209-218
    • /
    • 2010
  • The fifty six components of volatile organic compounds(VOCs) were continuously measured by the hour to see the distributions their of its concentration and the ozone creating contribution of nitric oxides and VOCs in Gamjeon Odor and VOCs Monitoring Network from April to September, 2008. Aromatics occupied 51.3% of VOCs and paraffins, alkanes and olefins came in order. The monthly concentration of VOCs in Gamjeon was high in July and low in September. As for hourly concentration of ozone and nitric oxides, ozone started to increase since 10am having the highest in the daytime, and nitric oxides had the different trend from that of ozone, showing the lowest in the daytime. The photochemical ozone creating potentials(POCPs) of toluene, propane, m/p-xylene, ethylbenzene, and 1,2,4-trimethylbenzene were 30.6%, 10.2%, 9.4%, 7.4% and 5.2% respectively. These five components occupied 62.8% of total POCPs, which means they contributed to the ozone creation mainly. Related with the ozone creating contribution, the ratio of VOCs to NOx was generally under 6 occupied 72.0%, which came under the area coexisting the limit of VOCs. Therefore it is thought that the management of emission source of VOCs is very important for the reduction of ozone.

The Comparison of Volatile Organic Compounds (VOCs) Analysis and Tradescantia Micronucleus (Trad-MCN) Bioassay for Evaluation of Hazardous Materials in Chemical Workplace Field (화학공장 실내 작업장에서의 유해물질 평가를 위한 VOC 분석법과 자주달개비 미세핵 분석법의 비교)

  • Heo, Gwi Suk;Lee, Jae Hwan;Shin, Hae Shik;Kim, Jin Kyu;Lee, Young Yup;Lee, Dai Woon;Lee, Jin Hong
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • This research examined the presence of hazardous materials in chemical workplace field using an integrated chemical/biological monitoring. Chemical workplace field air for volatile organic compounds (VOCs) analysis was collected using a collection tube packed with Tena.x TA adsorbent 400 mg. Workplace field air samples were analyzed by gas chromatography/mass spectrometry (GC/MS). Simultaneously, Tradescantia BNL 4430 clone was exposed in situ to monitor hazardous materials in chemical workplace field. GC/MS analysis showed the presence of various VOCs such as trichloroethylene, toluene, ethylbenzene, (m,p,o)-xylenes, styrene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene. The results showed that in situ monitoring of VOCs with the Tradescantia-micronucleus (Trad-MCN) assay gave positive results in chemical workplace field and negative response at outdoor air. In conclusion, inhalation of these field air by workers may affect chronic demage to their health by inducing micronuclei formation in Tradescantia pollen mother cells. The combination of chemical/biological monitoring is very effective to evaluate hazardous materials in workplace field and can be alternatively used for screening hazardous materials.

Concentration of Volatile Organic Compounds at Main Stream and Branch Stream of Kumho River (금호강 본류와 지류에서의 휘발성 유기화합물질 농도)

  • 김용혜;장봉기;홍성철;이종영
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.135-146
    • /
    • 1998
  • In this study, we investigated to measured concentration, seasonal characteristics and load quantity of volatile organic compounds(VOCs) for 11 sites in the main stream and 8 sites in the branch stream of Kumho river, during from October 1995 to April 1997. As a results, the small amount of volatile compounds, such as dichloromethane, chloroform, toluene, benzene, trichloroethene, tetrachloroethene, p-xylene and 1,3,5-trimethyl-benzene were detected from the main stream of Kumho river. Also detected to dichloromethene, chloroform, toluene, benzene, trichloroethene, tetrachloroethene, ethylbenzene, p-xylene, 1,3,5-trimethylbebzene and 1,2,4-trimethylbenzene in the branch stream, and dichloromerhane, chloroform and toluene were detected to all site of sampling. And seasonal variation of volatile organic compounds showed higher concentration in the July 1996 as a winter season than January 1997 as a summer season in most places. Also the load quantity of volatile organic compound at Gangchang site in the last downstream of Kumho river, was in order of chloroform > dichloromethane > toluene > trichloroethene.

  • PDF

Characteristics of Air Quality in the West Coastal Urban Atmosphere; Characteristics of VOCs Concentration Measured from an Industrial Complex Monitoring Station at Gunsan and a Roadside Station at Jeonju (서해연안 도시지역의 대기질 특성 연구: 군산시 산업단지와 전주시 도로변에서 VOCs 농도분포 특성 연구)

  • Ryoo, Jae-Youn;Kim, Deug-Soo;Chae, Soo-Cheon;Nam, Tu-Cheon;Choi, Yang-Seock
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.633-648
    • /
    • 2010
  • The study was performed to elucidate the characteristics of VOCs at distinct monitoring sites in urban atmosphere; one is at a roadside in downtown inland city of Jeonju, and the other is at an industrial site in Gunsan near coastal area. The ambient samples were collected for 24 hours in two-bed adsorbent tubes by using MTS-32 sequential tube sampler equipped with Flex air pump every 16 days in a roadside and a industrial complex from February to November in 2009. VOCs were determined by thermal desorption coupled with GC/MSD. Major individual VOCs in roadside samples were shown as following order in magnitude: toluene>m,p-xylene>ethyl benzene>decanal; and those in the industrial complex samples were as follows: toluene>ethanol>ethyl acetate>decanal>m,pxylene. High benzene concentration in the roadside was more frequently occurred than in the industrial complex. However ambient level of toluene in the industrial complex was higher than that in the road side. Results from roadside sample analysis showed that nonane and 1,2,4-trimethylbenzene were very frequently observed with higher concentrations than those in the industrial complex. It seems that nonane and 1,2,4-trimethylbenzene could be the source characteristics for the roadside air. From the diurnal variation, it was found that concentrations of benzene, ethylbenzene, xylene, nonane and 1,2,4-trimethylbenznene in the roadside were higher during rush hours; but those in the industrial complex were higher from 10 to 16 LST when the industrial activities were animated. On weekly base, the concentration of benzene, toluene, ethylbenzene and m,p-xylene in the roadside were higher specifically on Wednesday, but those in the industrial complex were higher on Sunday. It was found that the general trends of VOCs levels at both sites significantly influence on seasonal changes. The results of factor analysis showed that the VOCs in the roadside were mainly affected by the emission of vehicles and the evaporation of diesel fuel, meanwhile those in the industrial complex were influenced by the evaporation of solvents and vehicular emission.

Characteristic of odor from feed manufactory and evaluation of odor reduction efficiency using chemical scrubber (사료제조 공장의 발생악취 특성 및 약액세정탑을 이용한 악취저감효율 평가)

  • Lim, Ji-Young;Jeon, Yong-Bin;Song, Seung-Jun;Cho, Young-Gun;Kim, Jin-Han
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.389-395
    • /
    • 2018
  • The odor substances generated in a feed manufactory operating for the commercialization of animal-vegetable materials were analyzed and the odor reduction efficiency by a chemical scrubber was evaluated. The major causative substances in the feed manufactory comprised about 45.4% of ketone compounds and about 13.3% of aldehyde compounds. On the other hand, the removal efficiencies of diacetyl and acetoin as ketone compounds were 77.3% and 78.1%, respectively, by a chemical scrubber. Additionally, the removal efficiencies of acetaldehyde, butyraldehyde, valeraldehyde, 2-furancarboxaldehyde, and nonanal were 86.0%, 78.9%, 67.4%, 52.8%, and 71.9%, respectively. These rates were higher than the odor generation substance contribution rate as a result of treating the exhaust gas generated from the feed manufactory by the chemical scrubber using 5% of C3. It was also found that xylene, methylcyclopentane, benzene, ethylbenzene, 1,3,5-trimethylbenzene, and decane were almost not removed.

Effect of Surfactant on Solvent Extraction for Light Hydrocarbon from Soils (토양중 Light Hydrocarbon의 용매추출에 미치는 계면활성제의 영향)

  • Hwang, Keon-Joong;Atalay, Asmare
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.74-79
    • /
    • 1998
  • This study was conducted to evaluate the surfactant solutions which influence solvent extraction from light hydrocarbon contaminated soils. Nine characteristic compounds were studied: benzene, toluene, ethylbenzene, o-xylene, mxylene, p-xylene, n-propylbenzene, 1,2,4-trimethylbenzene, and n-butylbenzene which were found in gasoline. Adsee-799 and Witbreak DRA-22 showed some extractive capacity for light hydrocarbons from soil. There was no added advantage obtained by using other surfactants in this study. No removal of contaminants from soil was observed when the surfactant concentration was 0.5 percent or below. When the surfactant concentration was 4 percent, the average recovery for some hydrocarbons was 10.8 percent, which was the best obtained at these levels. There was 10 percent surfactant contribution for methanol extraction from soil with the Witbreak DPG-482 and Witbreak DRA-22. This study provided a useful screening technique for procedures that can be used to remediate soils contaminated with light hydrocarbons.

  • PDF