• Title/Summary/Keyword: 1, 2-Octanediol galactoside

Search Result 3, Processing Time 0.015 seconds

The Study of Optimal Conditions for Synthesis and Purification of 1, 2-Octanediol Galactoside (1, 2-Octanediol Galactoside 합성을 위한 최적 조건 및 정제 연구)

  • Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • 1, 2-Octanediol (OD) as a cosmetic additive has been used simultaneously as a preservative and humectant. To solve the skin problem by 1, 2-octanediol (OD), we have synthesized 1, 2-octanediol galactoside (OD-gal) using Escherichia coli β-galactosidase (β-gal). Meanwhile, the optimal amount of β-gal, OD concentration, pH, and temperature for OD-gal synthesis were 4.5 U/ml, 150 mM, 7.0, and 37℃, respectively. Under these conditions, 150 mM OD was converted into about 55.9 mM OD-gal during 24 hours, in which the conversion yield (mole basis) was about 37.2%. In addition, OD-gal of 67.4 mg could be purified from a 9 ml reaction mixture, in which the overall synthesis yield from OD to the purified OD-gal was about 34.1% (weight basis) and 16.2% (mole basis), respectively. We are expecting that these results will be helpful to develop a safer additive in the cosmetic industry as basic data.

Confirmation of Enzymatic Synthesis of 1, 2-Octanediol Galactoside using Mass Spectrometry and NMR Spectroscopy (Mass spectrometry와 NMR Spectroscopy를 이용한 1, 2-Octanediol Galactoside의 효소합성 확인)

  • Lee, Hyang-Yeol;Jin, Hong-Jong;An, Seung Hye;Lee, Hye Won;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.824-831
    • /
    • 2021
  • 1, 2-Octanediol galactoside (OD-gal) has been synthesized from 1, 2-octanediol (OD), as a safer cosmetic preservative, using recombinant Escherichia coli β-galactosidase (β-gal). To confirm the molecular structure of synthesized OD-gal, mass spectrometry and NMR (1H- and 13C-) spectroscopy of OD-gal were carried out. In the reaction mixture, a sodium adduct ion of OD-gal (m/z=331.1732) was identified using mass spectrometry analysis. In addition, 1H NMR spectrum of OD-gal showed multiple peaks corresponding to the galactosyl group, which is evidence of galactosylation on OD. Downfield proton peaks at δH 4.39 ppm and multiple peaks from δH 3.98~3.55 ppm were indicative of galactosylation on OD. Up field proton peaks at δH 1.52~1.26 ppm and 0.89 ppm showed the presence of CH2 and CH3 protons of OD. 13C NMR spectrum revealed the presence of 24 carbons suggestive of α- and β-anomers of OD-gal. Among 14 carbon peaks from each anomer, the 4 peaks at δC 31.4, 29.0, 22.3, and 13.7 ppm were assigned to be overlapped showing only 24 peaks out of a total of 28 peaks. The mass value from mass spectrometry analysis of OD-gal, and 1H and 13C NMR spectral data were in good agreement with the expecting structure of OD-gal. Finally, we identified a galactose molecule from the hydrolysate of OD-gal using β-gal. We are expecting that through future study it will eventually be able to develop a safe cosmetic preservative.

Comparative Study of Antimicrobial and Cytotoxic Effects of 1, 2-Octanediol and 1, 2-Octanediol Galactoside (1, 2-Octanediol과 1, 2-Octanediol Galactoside의 항균력 및 세포독성 비교연구)

  • Kim, Jun-Sub;Jin, Hong-Jong;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.629-637
    • /
    • 2021
  • To develop a safer cosmetic preservative, we carried out a comparative study on characteristics of OD and OD-gal, where OD-gal was synthesized from OD using E. coli β-gal. OD-gal synthesis was confirmed by mass spectrometry analysis as sodium adduct ion (m/z=331.1731) and protonated ion (m/z=309.1926) of OD-gal. To compare the antimicrobial activities of OD and newly synthesized OD-gal, MIC values were investigated using E. coli, S. aureus, C. albicans, and A. niger. As a result, it was observed that there was no remarkable difference between MIC values of OD and OD-gal. In addition, to compare the cytotoxicity of OD-gal and OD, HaCaT cells were treated with OD or OD-gal, and then cell viability was quantified using EZ-Cytox assay. In the case of 1.5% OD, the cell viability was 64% at 24 h and 42% at 48 h compared to the control, and cell viability of 1.5% OD-gal-treated cells showed no significant change at 24 h and was 85% at 48 h. Consequently, the cytotoxicity of OD-gal-treated cells was reduced by more than 40% when compared with that of OD-treated cells. Thus, the newly synthesized OD-gal in this study is safer than the existing OD used as a cosmetic additive. In the future, OD-gal will be applicable as a substitute for OD as a less toxic preservative for the cosmetic industry.