• 제목/요약/키워드: . transformer

Search Result 4,358, Processing Time 0.051 seconds

A Predictive Bearing Anomaly Detection Model Using the SWT-SVD Preprocessing Algorithm (SWT-SVD 전처리 알고리즘을 적용한 예측적 베어링 이상탐지 모델)

  • So-hyang Bak;Kwanghoon Pio Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.109-121
    • /
    • 2024
  • In various manufacturing processes such as textiles and automobiles, when equipment breaks down or stops, the machines do not work, which leads to time and financial losses for the company. Therefore, it is important to detect equipment abnormalities in advance so that equipment failures can be predicted and repaired before they occur. Most equipment failures are caused by bearing failures, which are essential parts of equipment, and detection bearing anomaly is the essence of PHM(Prognostics and Health Management) research. In this paper, we propose a preprocessing algorithm called SWT-SVD, which analyzes vibration signals from bearings and apply it to an anomaly transformer, one of the time series anomaly detection model networks, to implement bearing anomaly detection model. Vibration signals from the bearing manufacturing process contain noise due to the real-time generation of sensor values. To reduce noise in vibration signals, we use the Stationary Wavelet Transform to extract frequency components and perform preprocessing to extract meaningful features through the Singular Value Decomposition algorithm. For experimental validation of the proposed SWT-SVD preprocessing method in the bearing anomaly detection model, we utilize the PHM-2012-Challenge dataset provided by the IEEE PHM Conference. The experimental results demonstrate significant performance with an accuracy of 0.98 and an F1-Score of 0.97. Additionally, to substantiate performance improvement, we conduct a comparative analysis with previous studies, confirming that the proposed preprocessing method outperforms previous preprocessing methods in terms of performance.

Deep Learning-Enabled Detection of Pneumoperitoneum in Supine and Erect Abdominal Radiography: Modeling Using Transfer Learning and Semi-Supervised Learning

  • Sangjoon Park;Jong Chul Ye;Eun Sun Lee;Gyeongme Cho;Jin Woo Yoon;Joo Hyeok Choi;Ijin Joo;Yoon Jin Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.541-552
    • /
    • 2023
  • Objective: Detection of pneumoperitoneum using abdominal radiography, particularly in the supine position, is often challenging. This study aimed to develop and externally validate a deep learning model for the detection of pneumoperitoneum using supine and erect abdominal radiography. Materials and Methods: A model that can utilize "pneumoperitoneum" and "non-pneumoperitoneum" classes was developed through knowledge distillation. To train the proposed model with limited training data and weak labels, it was trained using a recently proposed semi-supervised learning method called distillation for self-supervised and self-train learning (DISTL), which leverages the Vision Transformer. The proposed model was first pre-trained with chest radiographs to utilize common knowledge between modalities, fine-tuned, and self-trained on labeled and unlabeled abdominal radiographs. The proposed model was trained using data from supine and erect abdominal radiographs. In total, 191212 chest radiographs (CheXpert data) were used for pre-training, and 5518 labeled and 16671 unlabeled abdominal radiographs were used for fine-tuning and self-supervised learning, respectively. The proposed model was internally validated on 389 abdominal radiographs and externally validated on 475 and 798 abdominal radiographs from the two institutions. We evaluated the performance in diagnosing pneumoperitoneum using the area under the receiver operating characteristic curve (AUC) and compared it with that of radiologists. Results: In the internal validation, the proposed model had an AUC, sensitivity, and specificity of 0.881, 85.4%, and 73.3% and 0.968, 91.1, and 95.0 for supine and erect positions, respectively. In the external validation at the two institutions, the AUCs were 0.835 and 0.852 for the supine position and 0.909 and 0.944 for the erect position. In the reader study, the readers' performances improved with the assistance of the proposed model. Conclusion: The proposed model trained with the DISTL method can accurately detect pneumoperitoneum on abdominal radiography in both the supine and erect positions.

Nondestructive Quantification of Corrosion in Cu Interconnects Using Smith Charts (스미스 차트를 이용한 구리 인터커텍트의 비파괴적 부식도 평가)

  • Minkyu Kang;Namgyeong Kim;Hyunwoo Nam;Tae Yeob Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.28-35
    • /
    • 2024
  • Corrosion inside electronic packages significantly impacts the system performance and reliability, necessitating non-destructive diagnostic techniques for system health management. This study aims to present a non-destructive method for assessing corrosion in copper interconnects using the Smith chart, a tool that integrates the magnitude and phase of complex impedance for visualization. For the experiment, specimens simulating copper transmission lines were subjected to temperature and humidity cycles according to the MIL-STD-810G standard to induce corrosion. The corrosion level of the specimen was quantitatively assessed and labeled based on color changes in the R channel. S-parameters and Smith charts with progressing corrosion stages showed unique patterns corresponding to five levels of corrosion, confirming the effectiveness of the Smith chart as a tool for corrosion assessment. Furthermore, by employing data augmentation, 4,444 Smith charts representing various corrosion levels were obtained, and artificial intelligence models were trained to output the corrosion stages of copper interconnects based on the input Smith charts. Among image classification-specialized CNN and Transformer models, the ConvNeXt model achieved the highest diagnostic performance with an accuracy of 89.4%. When diagnosing the corrosion using the Smith chart, it is possible to perform a non-destructive evaluation using electronic signals. Additionally, by integrating and visualizing signal magnitude and phase information, it is expected to perform an intuitive and noise-robust diagnosis.

Class-Agnostic 3D Mask Proposal and 2D-3D Visual Feature Ensemble for Efficient Open-Vocabulary 3D Instance Segmentation (효율적인 개방형 어휘 3차원 개체 분할을 위한 클래스-독립적인 3차원 마스크 제안과 2차원-3차원 시각적 특징 앙상블)

  • Sungho Song;Kyungmin Park;Incheol Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.7
    • /
    • pp.335-347
    • /
    • 2024
  • Open-vocabulary 3D point cloud instance segmentation (OV-3DIS) is a challenging visual task to segment a 3D scene point cloud into object instances of both base and novel classes. In this paper, we propose a novel model Open3DME for OV-3DIS to address important design issues and overcome limitations of the existing approaches. First, in order to improve the quality of class-agnostic 3D masks, our model makes use of T3DIS, an advanced Transformer-based 3D point cloud instance segmentation model, as mask proposal module. Second, in order to obtain semantically text-aligned visual features of each point cloud segment, our model extracts both 2D and 3D features from the point cloud and the corresponding multi-view RGB images by using pretrained CLIP and OpenSeg encoders respectively. Last, to effectively make use of both 2D and 3D visual features of each point cloud segment during label assignment, our model adopts a unique feature ensemble method. To validate our model, we conducted both quantitative and qualitative experiments on ScanNet-V2 benchmark dataset, demonstrating significant performance gains.

Development and Efficacy Validation of an ICF-Based Chatbot System to Enhance Community Participation of Elderly Individuals with Mild Dementia in South Korea (우리나라 경도 치매 노인의 지역사회 참여 증진을 위한 ICF 기반 Decision Tree for Chatbot 시스템 개발과 효과성 검증)

  • Haewon Byeon
    • Journal of Advanced Technology Convergence
    • /
    • v.3 no.3
    • /
    • pp.17-27
    • /
    • 2024
  • This study focuses on the development and evaluation of a chatbot system based on the International Classification of Functioning, Disability, and Health (ICF) framework to enhance community participation among elderly individuals with mild dementia in South Korea. The study involved 12 elderly participants who were living alone and had been diagnosed with mild dementia, along with 15 caregivers who were actively involved in their daily care. The development process included a comprehensive needs assessment, system design, content creation, natural language processing using Transformer Attention Algorithm, and usability testing. The chatbot is designed to offer personalized activity recommendations, reminders, and information that support physical, social, and cognitive engagement. Usability testing revealed high levels of user satisfaction and perceived usefulness, with significant improvements in community activities and social interactions. Quantitative analysis showed a 92% increase in weekly community activities and an 84% increase in social interactions. Qualitative feedback highlighted the chatbot's user-friendly interface, relevance of suggested activities, and its role in reducing caregiver burden. The study demonstrates that an ICF-based chatbot system can effectively promote community participation and improve the quality of life for elderly individuals with mild dementia. Future research should focus on refining the system and evaluating its long-term impact.

Application of Geo-Segment Anything Model (SAM) Scheme to Water Body Segmentation: An Experiment Study Using CAS500-1 Images (수체 추출을 위한 Geo-SAM 기법의 응용: 국토위성영상 적용 실험)

  • Hayoung Lee;Kwangseob Kim;Kiwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.343-350
    • /
    • 2024
  • Since the release of Meta's Segment Anything Model (SAM), a large-scale vision transformer generation model with rapid image segmentation capabilities, several studies have been conducted to apply this technology in various fields. In this study, we aimed to investigate the applicability of SAM for water bodies detection and extraction using the QGIS Geo-SAM plugin, which enables the use of SAM with satellite imagery. The experimental data consisted of Compact Advanced Satellite 500 (CAS500)-1 images. The results obtained by applying SAM to these data were compared with manually digitized water objects, Open Street Map (OSM), and water body data from the National Geographic Information Institute (NGII)-based hydrological digital map. The mean Intersection over Union (mIoU) calculated for all features extracted using SAM and these three-comparison data were 0.7490, 0.5905, and 0.4921, respectively. For features commonly appeared or extracted in all datasets, the results were 0.9189, 0.8779, and 0.7715, respectively. Based on analysis of the spatial consistency between SAM results and other comparison data, SAM showed limitations in detecting small-scale or poorly defined streams but provided meaningful segmentation results for water body classification.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010 (설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Kim, Su-Min;Kwon, Young-Chul;Baik, Yong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

A Study on Ontology and Topic Modeling-based Multi-dimensional Knowledge Map Services (온톨로지와 토픽모델링 기반 다차원 연계 지식맵 서비스 연구)

  • Jeong, Hanjo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.79-92
    • /
    • 2015
  • Knowledge map is widely used to represent knowledge in many domains. This paper presents a method of integrating the national R&D data and assists of users to navigate the integrated data via using a knowledge map service. The knowledge map service is built by using a lightweight ontology and a topic modeling method. The national R&D data is integrated with the research project as its center, i.e., the other R&D data such as research papers, patents, and reports are connected with the research project as its outputs. The lightweight ontology is used to represent the simple relationships between the integrated data such as project-outputs relationships, document-author relationships, and document-topic relationships. Knowledge map enables us to infer further relationships such as co-author and co-topic relationships. To extract the relationships between the integrated data, a Relational Data-to-Triples transformer is implemented. Also, a topic modeling approach is introduced to extract the document-topic relationships. A triple store is used to manage and process the ontology data while preserving the network characteristics of knowledge map service. Knowledge map can be divided into two types: one is a knowledge map used in the area of knowledge management to store, manage and process the organizations' data as knowledge, the other is a knowledge map for analyzing and representing knowledge extracted from the science & technology documents. This research focuses on the latter one. In this research, a knowledge map service is introduced for integrating the national R&D data obtained from National Digital Science Library (NDSL) and National Science & Technology Information Service (NTIS), which are two major repository and service of national R&D data servicing in Korea. A lightweight ontology is used to design and build a knowledge map. Using the lightweight ontology enables us to represent and process knowledge as a simple network and it fits in with the knowledge navigation and visualization characteristics of the knowledge map. The lightweight ontology is used to represent the entities and their relationships in the knowledge maps, and an ontology repository is created to store and process the ontology. In the ontologies, researchers are implicitly connected by the national R&D data as the author relationships and the performer relationships. A knowledge map for displaying researchers' network is created, and the researchers' network is created by the co-authoring relationships of the national R&D documents and the co-participation relationships of the national R&D projects. To sum up, a knowledge map-service system based on topic modeling and ontology is introduced for processing knowledge about the national R&D data such as research projects, papers, patent, project reports, and Global Trends Briefing (GTB) data. The system has goals 1) to integrate the national R&D data obtained from NDSL and NTIS, 2) to provide a semantic & topic based information search on the integrated data, and 3) to provide a knowledge map services based on the semantic analysis and knowledge processing. The S&T information such as research papers, research reports, patents and GTB are daily updated from NDSL, and the R&D projects information including their participants and output information are updated from the NTIS. The S&T information and the national R&D information are obtained and integrated to the integrated database. Knowledge base is constructed by transforming the relational data into triples referencing R&D ontology. In addition, a topic modeling method is employed to extract the relationships between the S&T documents and topic keyword/s representing the documents. The topic modeling approach enables us to extract the relationships and topic keyword/s based on the semantics, not based on the simple keyword/s. Lastly, we show an experiment on the construction of the integrated knowledge base using the lightweight ontology and topic modeling, and the knowledge map services created based on the knowledge base are also introduced.