• Title/Summary/Keyword: -galactosidase

Search Result 669, Processing Time 0.024 seconds

Galactosialidosis with a Family History in a Sibling (남매에서 가족력을 가진 galactosialidosis 1례)

  • Im, Sun Ju;Nam, Sang Oak
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.6 no.1
    • /
    • pp.32-39
    • /
    • 2006
  • Galactosialidosis is a lysosomal storage disease associated with a combined deficiency of ${\beta}$-galactosidase and ${\alpha}$-neuraminidase, secondary to a defect of another lysosomal protective protein. It is a neurodegenerative disorder clinically characterized by psychomotor deterioration, cerebellar ataxia, coarse facies, generalized bony deformity and organomegaly. Three phenotypic subtype are recognized: early infantile, late infantile and juvenile/adult type. We report a 13 months old boy with a late infantile galactosialidosis. He was presented with progressive mental regression and motor disturbance and observed cherry red spot, hearing loss, moderate dysostosis multiplex and vacuolated lymphocytes in peripheral blood. He showed only ${\beta}$-galactosidase deficiency in the lymphocytes and was initially diagnosed as $GM_1$-gangliosidosis type 1. However, further studies revealed the possible defect of ${\alpha}$-neuraminidase suggesting that he was a case of galactosialidosis which was mimicking $GM_1$-gangliosidosis type 1.

  • PDF

Survivals of Lactic Acid Bacteria and its Characteristics under the Acidic and Anaerobic Condition (혐기적 산성조건하에서 젖산균의 생존과 그 특성)

  • 신용서;김성효;이갑상
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.373-377
    • /
    • 1995
  • We investigated the survival, $\beta$-galactosidase activity and cellular permeability of lactic acid bacteria such as Lactobacillus acidophilus ATCC 4356, Lactobacillus casei subsp. casei IFO 3533, Streptococcus thermophilus KCTC 2185, Lactobacillus delbrueckii subsp. lactis ATCC 4797, and Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 in anaerobic condition of pH 1.5-3.5 range. Numbers of all tested viable cells did not decrease at pH 3.5, but decreased rapidly at pH 1.5 and pH 2.5 during 2 hour incubation at modified EG medium. Immediately after 2 hour incubation, the decrease in population at pH 1.5 and pH 2.5 was about 6-8 and 5-7 log cycles/ml, respectively. Lactobacillus acidophilus ATCC 4356 showed the higest survival of all tested bacteria. The $\beta$-galactosidase activity from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 and Streptococcus thermophilus KCTC 2185 decreased rapidly at pH 1.5 and 2.5, but there was a little decrease at pH 3.5. The cellular permeability that was measured by the leakage of intracellular materials increased with decrease of pH. These results suggest that the ingested lactic acid bacteria may be destroyed in contact with low pH of gastric acid.

  • PDF

Improved Recombinant ,$\beta$-Galactosidase Production Using Medium Additives at AcNPV Infection of Insect Cells in Batch and Continuous Two-Stage Bioreactors (회분식과 연속식 2단계 생물반응기에서 AcNPV의 곤충세포에의 감염시 배지 첨가물을 이용한 재조합 $\beta$-Galactosidase 생산의 증진)

  • 김지선;이기웅
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.294-298
    • /
    • 1994
  • The medium additives such as CaCl2, glucose, fructose, glutamine, glutamate and lipids were examined to enhance recombinant ${\beta}$-galactosldase(${\beta}$-gal) production in batch and continuous two-stage bioreactor systems. The presence of each medium additive such as CaCl2, fructose, glutamate, cholesterol and tocopherol at AcNPV infection of Sf 21 cells had an effect on improved ${\beta}$-gal production. The recombinant ${\beta}$-gal production using the infection media supplemented with a mixture of 30mM $CaCl_2$, 2.2mM fructose, 4.1mM glutamate and 0.34mM cholesterol was increased by about 40%.

  • PDF

Enhanced sialylation and in vivo efficacy of recombinant human α-galactosidase through in vitro glycosylation

  • Sohn, Youngsoo;Lee, Jung Mi;Park, Heung-Rok;Jung, Sung-Chul;Park, Tai Hyun;Oh, Doo-Byoung
    • BMB Reports
    • /
    • v.46 no.3
    • /
    • pp.157-162
    • /
    • 2013
  • Human ${\alpha}$-galactosidase A (GLA) has been used in enzyme replacement therapy for patients with Fabry disease. We expressed recombinant GLA from Chinese hamster ovary cells with very high productivity. When compared to an approved GLA (agalsidase beta), its size and charge were found to be smaller and more neutral. These differences resulted from the lack of terminal sialic acids playing essential roles in the serum half-life and proper tissue targeting. Because a simple sialylation reaction was not enough to increase the sialic acid content, a combined reaction using galactosyltransferase, sialyltransferase, and their sugar substrates at the same time was developed and optimized to reduce the incubation time. The product generated by this reaction had nearly the same size, isoelectric points, and sialic acid content as agalsidase beta. Furthermore, it had better in vivo efficacy to degrade the accumulated globotriaosylceramide in target organs of Fabry mice compared to an unmodified version.

Transcription level of the ars-1 promoter of Neurospora crassa (Neurospora crassa ars-1 프로모터의 발현율 조사)

  • 이병욱;구상호
    • Journal of Life Science
    • /
    • v.13 no.2
    • /
    • pp.191-196
    • /
    • 2003
  • The ars gene of the Neurospora crassa encodes arylsulfatase and is expressed under sulfur limitation. An ars-1 promoter(Pars) translationally-fused to a lacZ gene was transformed into the N. crassa RLM 35-35, a his-3 inl strain and integrated into the his-S locus by a single crossover homologous recombination. $\beta$-galactosidase specific activity was measured from mycelia grown in sulfur-limited Vogel's medium. Enzyme activity reached its maximum at 14 hour after the shift to derepressing condition. When activity from homokaryon generated by microconidiation was measured, it was 17% a higher than that from heterokaryon.

Properties of the Fusants of Lactobacillus acidophilus 88 and Lactobacillus casei subsp. casei KCTC 1121

  • Jo, Young-Bae;Heo, Kyeong;Kim, Sung-Koo;Baik, Hyung-Suk;Jun, Hong-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 1997
  • Protoplast fusion between L. casei KCTC 1121 and L. acidophilus 88 was attempted to obtain improved strains. The fusants produced a bacteriocin against indicator strains, making a smaller inhibition zone compared to that of L. acidophilus 88. After culturing for 2 months on selective medium, the selected fusants were still stable without segregation. Fusants showed higher lipase activity compared to those of the two parent strains. Fusant No.4, 11, and 15 exhibited excellent lactic acid productivity. Fusant No.4 and 15 exhibited improved proteolysis ability compared to the two parent strains. Whereas L. casei possessed both ${\beta}-galactosidase$ and $phospho-{\beta}-galactosidase$ activities, and L. acidophilus 88 had only ${\beta}-galactosidase$ activity, the fusants had both the intermediate enzyme activities. Cell size of the fusants was greater than that of the parents.

  • PDF

A Recombinant Microbial Biosensor for Cadmium and Lead Detection (카드뮴 및 납 검출을 위한 재조합 미생물 바이오센서)

  • Shin, Hae Ja
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.503-508
    • /
    • 2016
  • Biosensors have been used as first-step monitoring tools to detect on-site samples in a simple and cost-effective manner. Numerous recombinant microbial biosensors have been exploited for monitoring on-site toxic chemicals and biological signals. Herein, a recombinant microbial biosensor was constructed for monitoring cadmium. The cadmium responding cadC regulatory gene and it’s promoter from Staphylococcus aureus was amplified through PCR, fused with the lacZ gene, and transformed into Escherichia coli BL21 (DE3) cells. In the presence of cadmium, the biosensor cells express β-galactosidase showing red color development with chlorophenol red β-galactopyranoside (CPRG) as the enzymatic substrate. The biosensor cells showed the best β-galactosidase activity after 3 hr induction with cadmium at pH 5 and a detection range from 0.01 μM to 10 mM cadmium with a linearity from 0.01 to 0.1 μM cadmium (y = 0.98 x + 0.142, R2 = 0.98). Among the heavy metals, cadmium and lead showed good responses, tin and cobalt showed medium responses, and mercury and copper showed no responses. The biosensor cells showed good responses to several waste waters similar to buffer solution, all spiked with cadmium. The biosensor described herein could be applied for on-site cadmium monitoring in a simple and cost-effective manner without sample pretreatments.

Studies on the Immobilization of ${\beta}-Galactosidase$ from Bacillus subtilis (Bacillus subtilis ${\beta}-Galactosidase$의 고정화에 관한 연구)

  • Jang, Gi;Kim, Chang-Ryoul;Lee, Yong-Kyu
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.426-433
    • /
    • 1990
  • The conditions for immobilization of the partially purified ${\beta}-galactosidase$ form Bacillus subtilis HP4 and the properties of the immobilized enzyme have been investigated. The crude enzyme precipitated with cold acetone was purified about 68-fold through DEAE-cellulose and sephadex G-100 chromatography and its recovery was 19.9% The optimal conditions for Immobilization of enzyme were obtained in 2%(w/v) sodium alginate, 15%(v/v) enzyme solution and 2%(w/v) calcium chloride, and also the optimal stirring thme was 2 hours on the above conditions. The optimum temperature and pH values for immobilized enzyme were $55^{\circ}C$ and 6.5, respectively. Its residual activity was show 25% after heat treatment for an hour at $65^{\circ}C$, and found its high stability in pH 6.0 to 8.0. The enzyme activity was not affected b)· EDTA, 2-mercaptoethanol, KCN, protective agents, and other methal ions except Hg ion and Cu ion. The $K_m\;and\;V_{max}$ values of the immobilized enzyme on ONPG were $1.82{\times}10^{-2}M\;and\;3.57{\times}10^{-8}mole/min$, whereas those on lactose were $2.94{\times}10^{-2}M\;and\;1.68{\times}10^{-7} mole/min$, respectively. The remained enzyme activity for the immobilized enzyme was 95%t of original activity after storage of 40 days at $4^{\circ}C$, and when reused for 5 times was 81%. When skim milk(4.8% lactose) and 5% lactose solution were reacted with the immobilized enzyme(250 units/g) of lactose were 51% and 43%, respectively.

  • PDF

Studies on the $\beta$-Galactosidase from Thermphilic Bacterium - Physiological Characteristics of the Selected Thermophile - (고온성 세균의 $\beta$-Galactosidase에 관한 연구 ( I ) - 분리고온균의 생리적 특성 -)

  • 이종수;오만진;이석건;김찬조
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.1
    • /
    • pp.5-13
    • /
    • 1983
  • This experiment was carried out to elucidate the thermotolerant properties of a thermophilic bacterium which isolated from soils of the hot springs area and selected for the $\beta$-galactosidase production. Biochemical and physiological characteristics of this strain were studied, including the investigation on the fatty acid composition for its neutral fats. The results obtained were summarized as follows. 1. This bacterium was identified as a strain belong to the genus Thermus. 2. Optimal temperature and pH for growth of this strain were $65^{\circ}C$ and pH 6.5 respectively, and it was found to be an absolute thermophilic bacterium which could not grow at 37$^{\circ}C$. 3. No growth was obtained in the medium which contained more than 1.0% of sodium chloride. 4. The tolerable concentration of antobiotics were 10$\mu\textrm{g}$ of penicillin G per $m\ell$ of medium and 0.5$\mu\textrm{g}$ of chloramphenicol per $m\ell$ respectively 5. This strain had autotrophilic requirements for calcium-pantothenate and pyridoxine-HCO as an-essential factor and for niacin as a stimulative factor. 6. Fatty acid composition of neutral fats of the strain was palmitic acid. 60.20%; lauric acid, 11.8%; myristic acid, 7.56%, behenic acid, 4.25%; capric acid, 1.77%; stearic acid, 2.13%; arachidic acid, 1.53%; and others unidentified, 10.7%.

  • PDF

Cloning, Heterologous Expression, and Characterization of Novel Protease-Resistant ${\alpha}$-Galactosidase from New Sphingomonas Strain

  • Zhou, Junpei;Dong, Yanyan;Li, Junjun;Zhang, Rui;Tang, Xianghua;Mu, Yuelin;Xu, Bo;Wu, Qian;Huang, Zunxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1532-1539
    • /
    • 2012
  • The ${\alpha}$-galactosidase-coding gene agaAJB13 was cloned from Sphingomonas sp. JB13 showing 16S rDNA (1,343 bp) identities of ${\leq}97.2%$ with other identified Sphingomonas strains. agaAJB13 (2,217 bp; 64.9% GC content) encodes a 738-residue polypeptide (AgaAJB13) with a calculated mass of 82.3 kDa. AgaAJB13 showed the highest identity of 61.4% with the putative glycosyl hydrolase family 36 ${\alpha}$-galactosidase from Granulicella mallensis MP5ACTX8 (EFI56085). AgaAJB13 also showed <37% identities with reported protease-resistant or Sphingomonas ${\alpha}$-galactosidases. A sequence analysis revealed different catalytic motifs between reported Sphingomonas ${\alpha}$-galactosidases (KXD and RXXXD) and AgaAJB13 (KWD and SDXXDXXXR). Recombinant AgaAJB13 (rAgaAJB13) was expressed in Escherichia coli BL21 (DE3). The purified rAgaAJB13 was characterized using p-nitrophenyl-${\alpha}$-D-galactopyranoside as the substrate and showed an apparent optimum at pH 5.0 and $60^{\circ}C$ and strong resistance to trypsin and proteinase K digestion. Compared with reported proteaseresistant ${\alpha}$-galactosidases showing thermolability at $50^{\circ}C$ or $60^{\circ}C$ and specific activities of <71 U/mg with or without protease treatments, rAgaAJB13 exhibited a better thermal stability (half-life of >60 min at $60^{\circ}C$) and higher specific activities (225.0-256.5 U/mg). These sequence and enzymatic properties suggest AgaAJB13 is the first identified and characterized Sphingomonas ${\alpha}$-galactosidase, and shows novel protease resistance with a potential value for basic research and industrial applications.