• Title/Summary/Keyword: -energy-dispersive x-ray-

Search Result 1,064, Processing Time 0.024 seconds

Preparation and Photosensitivity of Ag-Multi Walled Carbon Nanotube-TiO2 Nano Composite (Ag-Multi walled carbon nanotube-TiO2 복합나노소재 제조 및 광감응성)

  • Kim, Sung-Pil;Kim, Jong-Oh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.5-11
    • /
    • 2016
  • $MWCNT-TiO_2$ nano composites and $Ag-MWCNT-TiO_2$ nano composites were prepared from Multi-Walled Carbon NanoTube (MWCNT), titanium (IV) butoxide (TNB) solution and silver nitrate ($AgNO_3$) by the sol-gel method. The dispersion and structure of Ag in the synthesized composites was observed by Scanning Electron Microscopy (SEM) and Field Emission Transmission Electron Microscopy (FE-TEM). X-Ray Diffraction (XRD) patterns of the composites showed that the composites contained an anatase phase. The Energy Dispersive X-ray spectroscopy (EDX) showed the presence of C, O, Ti and Ag peaks. The $TiO_2$ particles were distributed uniformly in the MWCNT network, and Ag particles were virtually fixed on the surface of the tubes. Also decomposition of the methylene blue was investigated according to UV radiation times for study photocatalytic activity. $Ag-MWCNT-TiO_2$ nano composites show high photodegradation than $MWCNT-TiO_2$ nano composites. The results indicate that the high conductivity of Ag improved the photoactivity of the $MWCNT-TiO_2$ composite.

Study on the Composition and Crystallization of TiNi Thin Films Fabricated by Pulsed Laser Deposition in Ambient Ar Gas (Ar가스 분위기에서 PLD방법으로 제작된 TiNi박막의 조성 및 결정성에 관한 연구)

  • Cha, J.O.;Shin, C.H.;Yeo, S.J.;Ahn, J.S.;Nam, T.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.116-121
    • /
    • 2007
  • TiNi shape memory alloy(SMA) was fabricated by PLD(plused laser deposition) using equiatomic TiNi target. Composition and crystallization of TiNi thin films which were fabricated in ambient Ar gas(200m Torr)and vacuum($5{\times}10^{-6}\;Torr$) were investigated. Composition of TiNi thin films was characterized by energy-dispersive X-ray spectrometry (EDXS) and crystallization was confirmed by X-ray diffraction (XRD). The composition of films depends on the distance between target and substrate but does not sensitively depend on the substrate temperature. It is found that the composition of films can be easily controlled when substrate is placed inside plume in ambient Ar gas. It is also found that the in situ crystallization temperature ($ca.\;400^{\circ}C$) in ambient Ar gas is lowered in comparison with that of TiNi film prepared under vacuum. The low crystallization temperature in ambient Ar gas makes it possible to prepare the crystalline TiNi thin film without contamination.

Review on asbestos analysis (석면 분석방법에 대한 고찰)

  • Ham, Seung hon;Hwang, Sung Ho;Yoon, Chungsik;Park, Donguk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.3
    • /
    • pp.213-232
    • /
    • 2009
  • This document was prepared to review and summarize the analytical methods for airborne and bulk asbestos. Basic principles, shortcomings and advantages for asbestos analytical instruments using phase contrast microscopy(PCM), polarized light microscopy(PLM), X-ray diffractometer (XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) were reviewed. Both PCM and PLM are principal instrument for airborne and bulk asbestos analysis, respectively. If needed, analytical electron microscopy is employed to confirm asbestos identification. PCM is used originally for workplace airborne asbestos fiber and its application has been expanded to measure airborne fiber. Shortcoming of PCM is that it cannot differentiate true asbestos from non asbestos fiber form and its low resolution limit ($0.2{\sim}0.25{\mu}m$). The measurement of airborne asbestos fiber can be performed by EPA's Asbestos Hazard Emergency Response Act (AHERA) method, World Health Organization (WHO) method, International Standard Organization (ISO) 10312 method, Japan's Environmental Asbestos Monitoring method, and Standard method of Indoor Air Quality of Korea. The measurement of airborne asbestos fiber in workplace can be performed by National Institute for Occupational Safety and Health (NIOSH) 7400 method, NIOSH 7402 method, Occupational Safety and Health Administration (OSHA) ID-160 method, UK's Health and Safety Executive(HSE) Methods for the determination of hazardous substances (MDHS) 39/4 method and Korea Occupational Safety and Health Agency (KOSHA) CODE-A-1-2004 method of Korea. To analyze the bulk asbestos, stereo microscope (SM) and PLM is required by EPA -600/R-93/116 method. Most bulk asbestos can be identified by SM and PLM but one limitation of PLM is that it can not see very thin fiber (i.e., < $0.25{\mu}m$). Bulk asbestos analytical methods, including EPA-600/M4-82-020, EPA-600/R-93/116, OSHA ID-191, Laboratory approval program of New York were reviewed. Also, analytical methods for asbestos in soil, dust, water were briefly discussed. Analytical electron microscope, a transmission electron microscope equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analyser(EDXA), has been known to be better to identify asbestiform than scanning electron microscope(SEM). Though there is no standard SEM procedures, SEM is known to be more suitable to analyze long, thin fiber and more cost-effective. Field emission scanning electron microscope (FE-SEM) imaging protocol was developed to identify asbestos fiber. Although many asbestos analytical methods are available, there is no method that can be applied to all type of samples. In order to detect asbestos with confidence, all advantages and disadvantages of each instrument and method for given sample should be considered.

Comparison of Mechanical properties and Surface Friction of White Metals Produced by Centrifugal and Laser Cladded on SCM440 (원심주조방식과 레이저 클래딩 증착법을 통한 화이트메탈의 기계 및 마찰특성 비교)

  • Jeong, Jae-Il;Kim, Dong-Hyuk;Park, Jin-Young;Oh, Joo-Young;Choi, Si-Geun;Kim, Seock-Sam;Cho, Young Tae;Lee, Ho;Ham, Seung-Sik;Kim, Jong-Hyoung
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.84-92
    • /
    • 2018
  • Bearings are essential for reducing vibration and wear, in order to achieve high durability and increase longevity. White metal treatment of tilting pads via centrifugal casting method has the possibility of increasing durability. However, this manufacturing method has drawbacks such as long processing time, high defect rate, and harmful health effects. Laser cladding deposition technique is a powerful method that can address these issues by decreasing the processing time and providing good adhesion. In this study, we suggest optimum conditions for laser cladding deposition that can be used in industrial applications. We deposited a soft white metal layer on SCM440 that is primarily used in shafts to minimize wear of bearing pads. During the laser deposition process, we controlled factors such as laser power, powder feed rate, and laser head speed to determine the optimum conditions. In addition, we measured the hardness using micro Vickers, and performed field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and friction tests to investigate the mechanical properties and surface characteristics for different parameters. Based on the experimental results, we suggest that laser power, powder feed rate, and laser head speed of 1.3 kW, 2.5 rpm, and 10 mm/s, respectively, constitute the optimum conditions for producing white metals using laser cladding.

Study of adhesion properties of flexible copper clad laminate having various thickness of Cr seed layer under constant temperature and humidity condition (항온항습 조건하에서 Ni/Cr 층의 두께에 따른 FCCL의 접합 신뢰성 평가)

  • Choi, Jung-Hyun;Noh, Bo-In;Yoon, Jeong-Won;Kim, Yong-Il;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.80-80
    • /
    • 2010
  • 전자제품의 소형화, 경량화, 고집적화가 심화됨에 따라 전자제품을 구성하는 회로의 미세화 또한 요구되고 있다. 이러한 요구는 경성회로기판 (rigid printed circuit board, RPCB) 뿐만 아니라 연성회로기판 (flexible printed circuit board, FPCB) 에도 적용되고 있으며 이에 대한 많은 연구 또한 이루어지고 있다. 연성회로기판은 일반적으로 절연층을 이루는 폴리이미드 (polyimide, PI)와 전도층을 이루는 구리로 이루어져 있다. 폴리이미드는 뛰어난 열적 화학적 안정성, 우수한 기계적 특성, 연속공정이 가능한 장점을 가지고 있으나, 고온다습한 환경하에서 높은 흡습성으로 인해 전도층을 이루는 구리와의 접합특성이 저하되는 단점 또한 가지고 있다. 또한 전도층을 이루는 구리는 고온다습한 환경하에서 산화 발생이 용이하기 때문에 접합특성의 감소를 야기할 수 있다. 따라서 본 연구에서는 고온다습한 조건하에서 sputtering and plating 공정을 통해 순수 Cr seed layer를 가지는 연성회로기판의 seed layer의 두께와 시효시간의 변화로 인해 발생하는 접합특성의 변화를 관찰하고 분석하였다. 본 연구에서는 두께 $25{\mu}m$의 일본 Kadena사(社)에서 제작된 폴리이미드 상에 sputtering 공정을 통해 순수 Cr으로 이루어진 각각 두께 100, 200, $300{\AA}$의 seed layer를 형성한 후 전해도금법을 이용, 두께 $8{\mu}m$의 구리 전도층을 형성한 시료를 사용하였다. 제작된 시료는 고온다습한 환경하에서의 접합 특성의 변화를 관찰하기 위하여 $85^{\circ}C$/85%RH 항온항습 조건하에서 각각 24, 72, 120, 168시간 동안 시효처리 한 후, Interconnections Packaging Circuitry (IPC) 규격에 의거하여 접합강도를 측정하였다. 시료의 전도층은 폭 3.2mm 길이 230mm의 패턴을 가지도록, 절연층은 폭 10mm, 길이 230mm으로 구성되었으며 이를 50.8mm/min의 박리 속도로 각 시편당 8회의 $90^{\circ}$ peel test를 실시하였다. 파면의 형상과 화학적 조성을 분석하기 위해 SEM (Scanning electron microscope)과 EDS (Energy-dispersive X-ray spectroscopy)를 사용하였으며, 파면의 조도 측정을 위해 AFM (Atomic force microscope)을 사용하였다. 또한 계면의 화학적 결합상태를 분석하기 위해 XPS (X-ray photoelectron spectroscopy)를 통해 파면을 관찰 분석하였다.

  • PDF

Properties of Capacity on Carbon Electrode in EC : MA Electrolyte II. Effect of Additives on Initial Irreversible Capacity (EC : MA 혼합전해질에서 카본 전극의 용량 특성 II. 초기 비가역 용량에 대한 첨가제의 효과)

  • Park, Dong-Won;Kim, Woo-Seong;Son, Dong-Un;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.575-579
    • /
    • 2006
  • Solid electrolyte interface is formed on a carbon electrode used as an anode in Li-ion battery, which can be of $Li^{+}$ intercalation/deintercalation during the first cycle. The passivation film formed by a solvent decomposition during the initial charge process affects cell performance and it was one of the main reason of an initial irreversible capacity. This paper describes the use, for the first time, of $Li_2CO_3$ as the additive for the formation of a passivation film on the carbon surface to suppress the initial irreversible reaction. Chronopotentiometry, cyclic voltammetry, and impedance spectroscopy were used to investigate the effects of the $Li_{2}CO_{3}$ additive. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction were also used to monitor changes in the surface morphology and composition of the passivation film formed by solvent decomposition and the precipitation of $Li_{2}CO_{3}$. The addition of $Li_{2}CO_{3}$ to a solution of 1 M $LiPF_{6}$/EC:MA (1:3, v/v) resulted in a decrease in the initial irreversible capacity and it was due to the suppression of the solvent decomposition on the electrode surface.

A SCANNING ELECTRON MICROSCOPIC STUDY OF BONDING ASPECTS TO THE SCLEROTIC DENTIN (경화된 상아질의 접합 양상에 관한 주사전자현미경적 연구)

  • Lee, Rin;Lee, Hyeong-Il;Lee, Kwang-Won;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.228-243
    • /
    • 1997
  • The changes of microstructures, morphology of sclerotic dentin and bonding aspects generated by an adhesive resin was investigated. Incisors and premolars showing natural cervical abrasions were collected and conditioned with 10 % phosphoric acid or 10 % maleic acid. The sclerotic dentin specimens were then rinsed and blot-dried and applied with dentin adhesive (All Bond 2) to the conditioned dentin surface. To examine the morphologic change of the sclerotic dentin specimen after etching and bonding procedure, the treated specimens were examined by SEM. To analyze the chemical composition of sclerotic dentin and crystals occluding dentinal tubules, the sclerotic dentin specimen was powdered and examined with X-ray Diffractometer. To investigate the Ca/P weight percent ratio within the dentinal tubules, the sclerotic dentin specimen was fractured perpendicularly to the long axis of the tooth from the center of cervical abrasion lesion and then examined with EDX(Energy Dispersive X-ray) microanalyzer. The results were as follows : 1. The increased width of peritubular dentin and the depositions of the irregular amorphous materials within the dentinal tubules were showed in the sclerotic dentin specimens. 2. After the treatment of sclerotic dentin specimen with 10 % phosphoric acid or 10 % maleic acid, the lateral side of tubules rather than cross-sectional tubule openings was showed exclusively at the incisal and gingival incline of the specimens. 3. After the treatment of sclerotic dentin specimen with 10 % phosphoric acid or 10 % maleic acid, the hybrid layer was not formed evidently and the resin tag was not formed or shortly penetrated into the tubules with the thinner diameter. 4. According to the results of XRD analysis of the sclerotic dentin specimen, Hydroxyapatite and Octacalcium phosphate were predominent, however, Whitlockite crystals were rare. 5. The mean Ca/P weight percent ratio analysed from 5 fractured sclerotic dentin specimens was $2.322{\pm}0.170$ at the intertubular dentin, $1.826{\pm}0.051$ within the dentinal tubule.

  • PDF

Evaluation of Raw and Calcined Eggshell for Removal of Cd2+ from Aqueous Solution

  • Kim, Youngjung;Yoo, Yerim;Kim, Min Gyeong;Choi, Jong-Ha;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.5
    • /
    • pp.249-258
    • /
    • 2020
  • The potential use of egg shell and calcined egg shell as adsorbent was evaluated and compared to remove Cd2+ from aqueous solution. The samples were characterized using Thermogravimetry and Differential Thermal Analysis (TG/DTA), Scanning Electron Microscope (SEM), X-ray Diffractometer (XRD), Energy Dispersive X-ray Spectrometer (EDX) and BET Surface Analyzer. The batch-type adsorption experiment was conducted by varying diverse variables such as contact time, pH, initial Cd2+ concentrations and adsorbent dosage. The results showed that, under the initial Cd2+ concentrations ranged from 25 to 200 mg g-1, the removal efficiencies of Cd2+ by egg shell powder (ESP) were decreased steadily from 96.72% to 22.89% with increase in the initial Cd2+ concentration at 2.5 g of dosage and 8 h of contact time. However, on the contrary to this, calcined egg shell powder (CESP) showed removal efficiencies above 99% regardless of initial Cd2+ concentration. The difference in the adsorption behavior of Cd2+ may be explained due to the different pH values of ESP and CESP in solution. Cd2+ seems to be efficiently removed from aqueous solution by using the CESP with a basicity nature of around pH 12. It was also observed that an optimum dosage of ESP and CESP for nearly complete removal of Cd2+ from aqueous solution is approximately 5.0 g and 1.0 g, respectively. Consequently, Cd2+ is more favorably adsorbed on CESP than ESP in the studied conditions. Adsorption data were applied by the pseudo-first-order and pseudo-second-order kinetics models and Freundlich and Langmuir isotherm models, respectively. With regard to adsorption kinetics tests, the pseudo-second-order kinetics was more suitable for ESP and CESP. The adsorption pattern of Cd2+ by ESP was better fitted to Langmuir isotherm model. However, by contrast with ESP, CESP was described by Freundlich isotherm model well.

Effect of Silane Coupling Agent on Adhesion Properties between Hydrophobic UV-curable Urethane Acrylate and Acrylic PSA (소수성 UV 경화형 우레탄 아크릴레이트와 아크릴 점착제 사이의 계면 부착력 향상을 위한 에폭시 실란의 영향)

  • Noh, Jieun;Byeon, Minseon;Cho, Tae Yeun;Ham, Dong Seok;Cho, Seong-Keun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.230-236
    • /
    • 2020
  • In this study, an adhesive tape with water and impact resistance for mobile devices was developed using a UV-curable urethane acrylate based polymer as a substrate. The substrate fabricated by UV-curable materials shows hydrophobicity and poor wettability, which significantly deteriorates the interface-adhesions between the substrate and acrylic adhesive. In order to improve the interface adhesion, 3-glycidoxy-propyl trimethoxysilane (GPTMS), a silane coupling agent having epoxy functional groups, was selected and incorporated into UV-curable urethane acrylate based polymer resins in various contents. The changes of the chemical composition according to the contents of GPTMS was studied with Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) to know the surface bonding properties. Also mechanical properties of the substrate were characterized by tensile strength, gel fraction and water contact angle measurements. The peel strengths at 180° and 90° were measured to compare the adhesion between the substrate and adhesive according to the silane coupling agent contents. The mechanical strength of the urethane acrylate adhesive tape decreased as the silane coupling agent increased, but the adhesion between the substrate and adhesives increased remarkably at an appropriate content of 0.5~1 wt%.

Microfluidic Assisted Synthesis of Ag-ZnO Nanocomposites for Enhanced Photocatalytic Activity (광촉매 성능 강화를 위한 미세유체공정 기반 Ag-ZnO 나노복합체 합성)

  • Ko, Jae-Rak;Jun, Ho Young;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.291-296
    • /
    • 2021
  • Recently, there has been increasing demand for advancing photocatalytic techniques that are capable of the efficient removal of organic pollutants in water. TiO2, a representative photocatalytic material, has been commonly used as an effective photocatalyst, but it is rather expensive and an alternative is required that will fulfill the requirements of both high performing photocatalytic activities and cost-effectiveness. In this work, ZnO, which is more cost effective than TiO2, was synthesized by using a microreactor-assisted nanomaterials (MAN) process. The process enabled a continuous production of ZnO nanoparticles (NPs) with a flower-like structure with high uniformity. In order to resolve the limited light absorption of ZnO arising from its large band gap, Ag NPs were uniformly decorated on the flower-like ZnO surface by using the MAN process. The plasmonic effect of Ag NPs led to a broadening of the absorption range toward visible wavelengths. Ag NPs also helped inhibit the electron-hole recombination by drawing electrons generated from the light absorption of the flower-like ZnO NPs. As a result, the Ag-ZnO nanocomposites showed improved photocatalytic activities compared with the flower-like ZnO NPs. The photocatalytic activities were evaluated through the degradation of methylene blue (MB) solution. Scanning electron microscopy (SEM), x-ray diffraction (XRD), and energy-dispersive x-ray spectroscopy (EDS) confirmed the successful synthesis of Ag-ZnO nanocomposites with high uniformity. Ag-ZnO nanocomposites synthesized via the MAN process offer the potential for cost-effective and scalable production of next-generation photocatalytic materials.