• Title/Summary/Keyword: -energy-dispersive x-ray-

Search Result 1,064, Processing Time 0.027 seconds

SUSCEPTIBILITY OF ALLOY 690 TO STRESS CORROSION CRACKING IN CAUSTIC AQUEOUS SOLUTIONS

  • Kim, Dong-Jin;Kim, Hong Pyo;Hwang, Seong Sik
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • Stress corrosion cracking (SCC) behaviors of Alloy 690 were studied in lead-containing aqueous alkaline solutions using the slow strain rate tension (SSRT) tests in 0.1M and 2.5M NaOH with and without PbO at $315^{\circ}C$. The side and fracture surfaces of the alloy were then examined using scanning electron microscopy after the SSRT test. Microstructure and composition of the surface oxide layer were analyzed by using a field emission transmission electron microscopy, equipped with an energy dispersive X-ray spectroscopy. Even though Alloy 690 was almost immune to SCC in 0.1M NaOH solution, irrespective of PbO addition, the SCC resistance of Alloy 690 decreased in a 2.5M NaOH solution and further decreased by the addition of PbO. Based on thermodynamic stability and solubility of oxide, high Cr of 30wt% in the Alloy 690 is favorable to SCC in mild alkaline and acidic solutions whereas the SCC resistance of high Cr Alloy 690 is weakened drastically in the strong alkaline solution where the oxide is not stable any longer and solubility is too high to form a passive oxide locally.

Outer Diameter Stress Corrosion Cracking Susceptibility of Steam Generator Tubing Materials (증기발생기 전열관 재료의 2차측 응력부식균열 민감성)

  • Kim, Dong-Jin;Kim, Hyun Wook;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.118-124
    • /
    • 2011
  • Alloy 600 (Ni 75 wt%, Cr 15 wt%, Fe 10 wt%) as a heat exchanger tube of the steam generator (SG) in nuclear power plants (NPP) has been degraded by various corrosion mechanism during the long-term operation. Especially lead (Pb) is known to be one of the most deleterious species in the secondary system causing outer diameter stress corrosion cracking (ODSCC). Oxide formation and breakdown is requisite for SCC initiation and propagation. Therefore it is expected that a property change of the oxide formed on SG tubing materials by lead addition into a solution is closely related to PbSCC. In the present work, the SCC susceptibility was assessed by using a slow strain rate test (SSRT) in caustic solutions with and without lead for Alloy 600 and Alloy 690 (Ni 60 wt%, Cr 30 wt%, Fe 10 wt%) used as an alternative of Alloy 600 because of outstanding superiority to SCC. The results were discussed in view of the oxide property formed on Alloy 600 and Alloy 690. The oxides formed on Alloy 600 and Alloy 690 in aqueous solutions with and without lead were examined by using a transmission electron microscopy (TEM), equipped with an energy dispersive x-ray spectroscopy (EDXS).

Development of Sustainable Releasing Micro Formulation System using γ-Irradiation Technique to Control Phytophthora Blight Disease

  • Park, Hae-Jun;Kim, Hwa-Jung;Kim, Dong Ho
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.305-311
    • /
    • 2011
  • We introduced a novel sustainable slow-releasing agrochemical formulation, a biopolymer bound to silica, for controlling plant diseases. The formulation was obtained through the following process. Curdlan, sodium silicate ($Na_2SiO_3$) and isopropyl alcohol were dissolved in DDW (Deionized-distilled water). The resultant solution was then irradiated using a $^{60}Co$ ${\gamma}$-irradiator (150 TBq of capacity; ACEL, Canada) at KAERI. The resultant solution was treated with phosphorous acid ($H_3PO_3$). Finally, we obtained a novel biopolymer-silica microsized formulation containing phosphorous acid ($H_3PO_3$) from the solution. The morphology of the complex was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM images revealed that the curdlan-silica formulation has a particle size ranging from 1 to $3{\mu}m$ with high stability. We also detected that $H_3PO_3$ was distributed within the formulation through energy dispersive X-ray spectroscopy (EDX) analysis. $H_3PO_3$ was sustain-released from the formulation in water. Based on our results, it seems effectively that one or two applications of the formulation during a cropping season will assist in controlling various plant diseases.

MICROSTRUCTURAL CHARACTERIZATION OF U-10WT.%ZR FUEL SLUGS CONTAINING RARE-EARTH ELEMENTS PREPARED BY MODIFIED INJECTION CASTING

  • SANG-HUN LEE;KI-HWAN KIM;SEOUNG-WOO KUK;JEONG-YONG PARK;JI-HOON CHOI
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.953-957
    • /
    • 2019
  • U-10wt.%Zr metallic fuel slugs containing rare-earth (RE: a rare-earth alloy comprising 53% Nd, 25% Ce, 16% Pr and 6% La) elements for a sodium-cooled fast reactor were fabricated by modified injection casting as an alternative method. The distribution, size and composition of the RE inclusions in the metallic fuel slugs were investigated according to the content of the RE inclusions. There were no observed casting defects, such as shrunk pipes, micro-shrinkage or hot tears formed during solidification, in the metallic fuel slugs fabricated by modified injection casting. Scanning electron micrographs and energy-dispersive X-ray spectroscopy (SEM-EDS) showed that the Zr and RE inclusions were uniformly distributed in the matrix and the composition of the RE inclusions was similar to that of a charged RE element. The content and the size of the RE inclusions increased slightly according to the charge content of the RE elements. RE inclusions in U-Zr alloys will have a positive effect on fuel performance due to their micro-size and high degree of distribution.

Fe-based Amorphous Alloy with High Strength and Toughness Synthesized based on nm-scale Phase Separation (nm-수준의 상분리를 이용하여 제조한 고강도 고인성 철계 비정질 합금)

  • Lee, Kwang-Bok;Park, Kyoung-Won;Yi, Sang-Ho;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Experiments have demonstrated that the addition of a moderate amount of V to $Fe_{52}Co_{(20-x)}B_{20}Si_4Nb_4V_x$ amorphous alloy enhances the plasticity of the alloy. In particular, $Fe_{52}Co_{17.5}B_{20}Si_4Nb_4V_{2.5}$ alloy withstood a maximum of 8.3% strain prior to fracture along with a strength exceeding 4.7 GPa. Energy dispersive x-ray spectroscopy conducted on the $Fe_{52}Co_{17.5}B_{20}Si_4Nb_4V_{2.5}$ alloy exhibited evidence of compositional modulation, indicating that nm-scale phase separation had occurred at local regions. In this study, the role played by nm-scale phase separation on the plasticity was investigated in terms of structural disordering and shear localization in order to better understand the structural origin of the enhanced plasticity shown by the developed alloy.

Semi-Permanent Hydrophilization of Polyester Textile by Polymerization and Oxidation Using Atmospheric Pressure Dielectric Barrier Discharge (APDBD)

  • Se Hoon Shin;Yoon Kee Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.115-123
    • /
    • 2023
  • In this paper, we report and discuss the semi-permanently hydrophilic (SPH) treatment of polyester fabric using plasma polymerization and oxidation based on atmospheric pressure dielectric barrier discharge (APDBD) technology. SiOxCy(-H) was coated on polyester fabric using Hexamethylcyclotrisiloxane (HMCTSO) as a precursor, and then plasma oxidation was performed to change the upper layer of the thin film to SiO2-like. The degradation of hydrophilicity of the SPH polyester fabrics was evaluated by water contact angle (WCA) and wicking time after repeated washing. The surface morphology of the coated yarns was observed with scanning electron microscopy, and the presence of the coating layer was confirmed by measuring the Si peak using energy dispersive x-ray spectroscopy. The WCA of the SPH polyester fabric increased to 50 degrees after 30 washes, but it was still hydrophilic compared to the untreated fabric. The decrease in hydrophilicity of the SPH fabric was due to peeling of the SiOxCy(-H) thin film coated on polyester yarns.

하이브리드 SEM 시스템

  • Kim, Yong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.109-110
    • /
    • 2014
  • 주사전자현미경(Scanning Electron Microscopy: SEM)은 고체상태에서 미세조직과 형상을 관찰하는 데에 가장 다양하게 쓰이는 분석기기로서 최근에 판매되고 있는 고분해능 SEM은 수 나노미터의 분해능을 가지고 있다. 그리고 SEM의 초점심도가 크기 때문에 3차원적인 영상의 관찰이 용이해서 곡면 혹은 울퉁불퉁한 표면의 영상을 육안으로 관찰하는 것처럼 보여준다. 활용도도 매우 다양해서 금속파면, 광물과 화석, 반도체 소자와 회로망의 품질검사, 고분자 및 유기물, 생체시료 nnnnnnnnn와 유가공 제품 등 모든 산업영역에 걸쳐 있다(Fig. 1). 입사된 전자빔이 시료의 원자와 탄성, 비탄성 충돌을 할 때 2차 전자(secondary electron)외에 후방산란전자(back scattered electron), X선, 음극형광 등이 발생하게 되는 이것을 통하여 topography (시료의 표면 형상), morphology(시료의 구성입자의 형상), composition(시료의 구성원소), crystallography (시료의 원자배열상태)등의 정보를 얻을 수 있다. SEM은 2차 전자를 이용하여 시료의 표면형상을 측정하고 그 외에는 SEM을 플랫폼으로 하여 EDS (Energy Dispersive X-ray Spectroscopy), WDS (Wave Dispersive X-ray Spectroscope), EPMA (Electron Probe X-ray Micro Analyzer), FIB (Focus Ion Beam), EBIC (Electron Beam Induced Current), EBSD (Electron Backscatter Diffraction), PBMS (Particle Beam Mass Spectrometer) 등의 많은 분석장치들이 SEM에 부가적으로 장착되어 다양한 시료의 측정이 이루어진다. 이 중 결정구조, 조성분석을 쉽고 효과적으로 할 수 있게 하는 X선 분석장치인 EDS를 SEM에 일체화시킨 장비와 EDS 및 PBMS를 SEM에 장착하여 반도체 공정 중 발생하는 나노입자의 형상, 성분, 크기분포를 측정하는 PCDS(Particle Characteristic Diagnosis System)에 대해 소개하고자 한다. - EDS와 통합된 SEM 시스템 기본적으로 SEM과 EDS는 상호보완적인 기능을 통하여 매우 밀접하게 사용되고 있으나 제조사와 기술적 근간의 차이로 인해 전혀 다른 방식으로 운영되고 있다. 일반적으로 SEM과 EDS는 별개의 시스템으로 스캔회로와 이미지 프로세싱 회로가 개별적으로 구현되어 있지만 로렌츠힘에 의해 발생하는 전자빔의 왜곡을 보정을 위해 EDS 시스템은 SEM 시스템과 연동되어 운영될 수 밖에 없다. 따라서, 각각의 시스템에서는 필요하지만 전체 시스템에서 보면 중복된 기능을 가지는 전자회로들이 존재하게 되고 이로 인해 SEM과 EDS에서 보는 시료의 이미지의 차이로 인한 측정오차가 발생한다(Fig. 2). EDS와 통합된 SEM 시스템은 중복된 기능인 스캔을 담당하는 scanning generation circuit과 이미지 프로세싱을 담당하는 FPGA circuit 및 응용프로그램을 SEM의 회로와 프로그램을 사용하게 함으로 SEM과 EDS가 보는 시료의 이미지가 정확히 일치함으로 이미지 캘리브레이션이 필요없고 측정오차가 제거된 EDS 측정이 가능하다. - PCDS 공정 중 발생하는 입자는 반도체 생산 수율에 가장 큰 영향을 끼치는 원인으로 파악되고 있으며, 생산수율을 저하시키는 원인 중 70% 가량이 이와 관련된 것으로 알려져 있다. 현재 반도체 공정 중이나 반도체 공정 장비에서 발생하는 입자는 제어가 되고 있지 않은 실정이며 대부분의 반도체 공정은 저압환경에서 이루어지기에 이 때 발생하는 입자를 제어하기 위해서는 저압환경에서 측정할 수 있는 측정시스템이 필요하다. 최근 국내에서는 CVD (Chemical Vapor Deposition) 시스템 내 파이프내벽에서의 오염입자 침착은 심각한 문제점으로 인식되고 있다(Fig. 3). PCDS (Particle Characteristic Diagnosis System)는 오염입자의 형상을 측정할 수 있는 SEM, 오염입자의 성분을 측정할 수 있는 EDS, 저압환경에서 기체에 포함된 입자를 빔 형태로 집속, 가속, 포화상태에 이르게 대전시켜 오염입자의 크기분포를 측정할 수 있는 PBMS가 일체화 되어 반도체 공정 중 발생하는 나노입자 대해 실시간으로 대처와 조치가 가능하게 한다.

  • PDF

A Study of Copper Production Techniques at the Archaeological Site in Gwanbukri, Buyeo in the 6th and 7th Centuries (6~7C 부여 관북리 유적의 동 생산기법 연구)

  • Lee, Ga Young;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.36 no.3
    • /
    • pp.162-177
    • /
    • 2020
  • Research was conducted to characterize the copper production and smelting process with 11 copper smelting by-products (copper slag and copper crucible) excavated from the NA and LA areas at the Gwanbuk-ri archeological site in Buyeo. Scanning electron microscopy-energy dispersive spectroscopy, wavelength dispersive X-ray fluorescence, X-ray diffraction, and Raman microspectroscopy were employed in the analysis. The research results reveal that the copper slag from Gwanbuk-ri contained silicate oxide, magnetite, fayalite, and delafossite, which are typical characteristics of crucible slag and refined slag. The outward appearance and microstructure of the slag were grouped as follows: 1. glassy matrix + Cu prill, 2. glassy matrix + Cu prill + magnetite, 3. silicate mineral matrix + Cu prill, 4. crystalline (delafossite and magnetite) + amorphous (Cu prill), 5. magnetite + fayalite, and 6. slag from slag. The copper slags from Guanbuk-ri were found to contain residues of impurities such as SiO2, Al2O3, CaO, SO4, P2O5, Ag2O, and Sb2O3 in their microstructure, and, in some cases, it was confirmed that copper, tin and lead are alloys. These results indicate that refining of intermediate copper(including impurities) and refining of alloys of copper(including impurities) - tin and refining of copper(including impurities) - tin - lead took place during the copper production process at Gwanbuk-ri, Buyeo.

Effect of Pore Structures of a Ti-49.5Ni (at%) Alloy on Bone Cell Adhesion (Ti-49.5Ni (at%)합금의 다공성 구조가 뼈 세포 흡착에 미치는 영향)

  • Im, Yeon-Min;Choi, Jung-Il;Khang, Dong-Woo;Nam, Tae-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.66-70
    • /
    • 2012
  • Ti-Ni alloys are widely used in numerous biomedical applications (e.g., orthodontics, cardiovascular science, orthopaedics) due to their distinctive thermomechanical and mechanical properties, such as the shape memory effect, superelasticity and low elastic modulus. In order to increase the biocompatibility of Ti-Ni alloys, many surface modification techniques, such as the sol-gel technique, plasma immersion ion implantation (PIII), laser surface melting, plasma spraying, and chemical vapor deposition, have been employed. In this study, a Ti-49.5Ni (at%) alloy was electrochemically etched in 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF electrolytes to modify the surface morphology. The morphology, element distribution, crystal structure, roughness and energy of the surface were investigated by scanning electron microscopy (SEM), energy-dispersive Xray spectrometry (EDS), X-ray diffractometry (XRD), atomic force microscopy (AFM) and contact angle analysis. Micro-sized pores were formed on the Ti-49.5Ni (at%) alloy surface by electrochemical etching with 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF. The volume fractions of the pores were increased by increasing the concentration of the HF electrolytes. Depending on the HF concentration, different pore sizes, heights, surface roughness levels, and surface energy levels were obtained. To investigate the osteoblast adhesion of the electrochemically etched Ti-49.5Ni (at%) alloy, a MTT test was performed. The degree of osteoblast adhesion was increased at a high concentration of HF-treated surface structures.

Preparation of Pd/Al2O3, Pd/Ag/Al2O3 Membranes and Evaluation of Hydrogen Permeation Performance (Pd/Al2O3, Pd/Ag/Al2O3 분리막의 제조와 수소 투과 성능 평가)

  • Lee, Jeong In;Shin, Min Chang;Zhuang, Xuelong;Hwang, Jae Yeon;Kim, Eok yong;Jeong, Chang-Hun;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.116-125
    • /
    • 2022
  • In this experiment, an α-Al2O3 ceramic hollow fiber was used as a support, and a hydrogen membrane plated with Pd and Pd-Ag was manufactured through electroless plating. The Pd-Ag membrane was annealed at 500℃ for 10 h to form an alloy of Pd and Ag. It was confirmed that it became a Pd-Ag alloy through EDS (Energy Dispersive X-ray Spectroscopy) analysis. Also, the thickness of the Pd, Pd-Ag plating layer was measured to be about 8.98 and 9.29 ㎛ through SEM (Scanning Electron Microscope) analysis respectively. Hydrogen permeation experiment was performed using the H2 gas and mixed gas (H2 and N2) in the range of 350~450℃ and 1-4 bar using the prepared hydrogen membrane. Under the H2 gas condition, the Pd and Pd-Ag membrane has a flux of up to 21.85 and 13.76 mL/cm2·min and also separation factors of 1216 and 361 were obtained in the mixed gas at 450℃ and 4 bar conditions respectively.