• Title/Summary/Keyword: -aminobutyric acid

Search Result 440, Processing Time 0.021 seconds

Effect of schizandra berry dregs and rice bran treatment on γ-aminobutyric acid (GABA) content enhancement in Pleurotus ostreatus (오미자박과 미강 첨가배지가 느타리버섯 자실체의 γ-aminobutyric acid(GABA) 함량에 미치는 효과)

  • Jeoung, Yun-Kyeoung;Kim, Jeong-Han;Baek, Il-Sun;Kang, Young Ju;Chi, Jeong-Hyun
    • Journal of Mushroom
    • /
    • v.15 no.2
    • /
    • pp.88-93
    • /
    • 2017
  • This study was carried out to establish a cultivation technique for increasing the ${\gamma}$-aminobutyric acid (GABA) content in the fruit body of mushrooms by adding processed by-products. For the oyster mushroom 'Heucktari', addition of green tea powder, sea tangle powder, and green tea dregs resulted in very poor primordia formation, fruit body growth, and increased GABA. However, addition of 10% schizandra berry dregs and 1% rice bran to the basal substrate induced 100% and 10% increases, in GABA content in the fruit bodies compared to the control treatment without by-product, respectively. In addition, fruit body growth and primordia formation were greatly increased by these treatments. Therefore, GABA content was increased when the substrate was prepared by mixing an appropriate amount of schizandra berry dregs and rice bran.

Improvement of $\gamma-Aminobutyric$ Acid (GABA) Production Using Cell Entrapment of Lactobacillus brevis GABA 057

  • Choi Soo-Im;Lee Jae-Won;Park Sang-Min;Lee Moo-Young;Ji Geun-Eog;Park Myeong-Soo;Heo Tae-Ryeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.562-568
    • /
    • 2006
  • GABA $(\gamma-aminobutyric\;acid)$ is the principal inhibitory neurotransmitter in the brain. For the efficient production of GAB A, a semi continuous cell entrapment system using Lactobacillus brevis GABA 057 was optimized, including the substrate concentration, bead-stabilizing additives, and reaction conditions. The converted monosodium glutamate (MSG), which was added as a substrate for glutamic acid decarboxylase (GAD), increased from 2% (w/v) to 12% (w/v). The addition of isomaltooligosaccharide to the alginate beads also increased the stability of the entrapped L. brevis and GABA productivity. Consequently, when optimal conditions were applied, up to 223 mM GABA could be produced from 534 mM MSG after 48 h of reaction by using alginate-beadencapsulated L. brevis GABA 057.

Intracellular Flux Prediction of Recombinant Escherichia coli Producing Gamma-Aminobutyric Acid

  • Sung Han Bae;Myung Sub Sim;Ki Jun Jeong;Dan He;Inchan Kwon;Tae Wan Kim;Hyun Uk Kim;Jong-il Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.978-984
    • /
    • 2024
  • Genome-scale metabolic model (GEM) can be used to simulate cellular metabolic phenotypes under various environmental or genetic conditions. This study utilized the GEM to observe the internal metabolic fluxes of recombinant Escherichia coli producing gamma-aminobutyric acid (GABA). Recombinant E. coli was cultivated in a fermenter under three conditions: pH 7, pH 5, and additional succinic acids. External fluxes were calculated from cultivation results, and internal fluxes were calculated through flux optimization. Based on the internal flux analysis, glycolysis and pentose phosphate pathways were repressed under cultivation at pH 5, even though glutamate dehydrogenase increased GABA production. Notably, this repression was halted by adding succinic acid. Furthermore, proper sucA repression is a promising target for developing strains more capable of producing GABA.

Changes in γ-Aminobutyric Acid of Bitter Melon (Momordica charantia L.) with Different Cultivation Regions, Harvest Time and Maturation Stages, with Method Validation (재배지역, 수확시기 및 숙기에 따른 여주의 γ-Aminobutyric Acid 함량 변화 및 분석법 검증)

  • Lee, Sang Hoon;Jeong, Yun Sook;Song, Jin;Hwang, Kyung-A;Cho, Soo Muk;Hwang, In Guk
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.3
    • /
    • pp.408-415
    • /
    • 2018
  • This study aimed to investigate the changes in the ${\gamma}$-aminobutyric acid (GABA) content of bitter melon (Momordica charantia L.) cultivated from different regions, with different harvest times and at various maturation stages. Methods for observing the changes in GABA content were validated by determining the specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), and precision and accuracy using the HPLC-FLD system. Results showed high linearity in the calibration curve with a coefficient of correlation ($R^2$) of 0.9999. The LOD and LOQ values for GABA were 0.29 and $0.87{\mu}g/mL$, respectively. The relative standard deviations for intra- and inter-day precision of GABA were less than 5%. The recovery rate of GABA was in the range of 98.77% to 100.50%. The average content of GABA was 0.93 mg/g and Cheongju showed highest GABA content of 1.88 mg/g. As the time of harvest increased from May to September, the GABA content decreased from 1.56 to 0.86 mg/g. Also, maturation of the bitter melon fruit was associated with a decreased in GABA content.

Changes in the Components of Acetic Acid Fermentation of Brown Rice Using Raw Starch Digesting Enzyme (생전분 분해효소를 이용한 현미의 초산발효조건에 따른 성분변화)

  • 신진숙;정용진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.381-387
    • /
    • 2003
  • This study was performed to establish the fermentation method of non-steamed brown rice vinegar using starch saccharifing enzyme. During vinegar fermentation, initial pH had increased in the higher concentration of alcohol and acetic acid. Final pH was gradually changed to pH 2.90~3.44 from 3.44~4.06. The higher total acidity of brown rice vinegar resulted from the higher alcohol concentration. The total acidity was slightly dropped after gradually increasing from the starting of fermentation. Initial pH was decreased from 3.67 to 3.16. The total acidity was gradually increased from the first day of fermentation with 1.02, it was 1.54 on the second day after fermentation and there was a tendency to decreased after the highest values with 6.53 fermentation for 12 days. In organic acid composition, oxalic, malic, acetic, citric, and succinic acid were detected. The total free amino acid was decreased to 1,121 mg%. The major amino acids were ${\gamma}$ -aminobutyric acid, $\alpha$-aminoadipic acid and alanine, and ${\gamma}$-aminobutyric acid was the highest (539 mg%). The mineral contents such as P and K was high in sample and followed by Mg, Na, Ca.

Analysis of the Free Amino Acids and Volatile-Flavor Compounds in the Commercial Brown-Rice Vinegar Prepared via Static Acetic-Acid Fermentation (시판 정치배양 현미식초의 유리아미노산 및 휘발성 향기성분 특성 분석)

  • Kim, Gui-Ran;Yoon, Sung-Ran;Lee, Su-Won;Jeong, Mi-Seon;Kwak, Ji-Young;Jeong, Yong-Jin;Yeo, Soo-Hwan;Kwon, Joong-Ho
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.803-810
    • /
    • 2011
  • This study was performed to evaluate the quality of the commercial brown-rice vinegars of South Korean and Japanese origins, which were prepared via static acetic-acid fermentation. The major free amino acids of Korean brown-rice vinegars were proline, glutamic acid and phenylalanine, while those of the Japanese were proline, valine, phenylalanine, lysine, ${\gamma}$-aminobutyric acid, alanine and isoleucine. The ${\gamma}$-aminobutyric acid (GABA) and total amino acids (3686.37~4212.27 mg%) contents were found to be significantly higher in the Japanese than in the Korean brown-rice vinegars. The key volatile compounds of the Korean brown-rice vinegars, analyzed with GC-MS, were acetic acid, benzaldehyde, phenethyl alcohol and phenethyl acetate while those of the Japanese brown-rice vinegars were acetic acid, ethyl acetate, ethyl alcohol, isoamyl acetate, phenethyl acetate and benzaldehyde. The volatile patterns of the Korean and Japanese commercial brown-rice vinegars were effectively distinguished from each other using an electronic nose, through which it was also elucidated that the volatiles profiles were similar among the Japanese vinegars but were different among the Korean vinegars.

Effect of γ-Aminobutyric Acid and Probiotics on the Performance, Egg Quality and Blood Parameter of Laying Hens Parent Stock in Summer (γ-Aminobutyric Acid 및 생균제 급여가 여름철 산란 종계의 생산성, 계란 품질 및 혈액 성상에 미치는 영향)

  • Ji Heon, Kim;Yoo Don, Ko;Ha Guyn, Sung
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.239-246
    • /
    • 2022
  • This study was conducted to investigate the effects of dietary γ-aminobutyric acid (GABA) and a probiotic mixture on egg production and quality, blood parameters, and stress levels (corticosterone) in Hy-Line parent stock during summer in Korea. A total of 105 Hy-Line parent stock aged 24 weeks were randomly divided into three groups, each containing thirty-five birds: control, γ-aminobutyric acid (GABA), and probiotics (1 × 108/g Bacillus licheniformis, 1 × 107/g Lactobacillus plantarum, and 1 × 107/g Corynebacterium butyricum). The hens were fed a diet containing 50 ppm GABA or 0.1% probiotics for 6 weeks. Compared with the control group, the hen-day egg production, egg mass, and feed conversion ratio over the total period were significantly higher in the probiotic group (P<0.05). In contrast no significant differences were detected among groups with respect to egg weight, albumen height, Haugh units, yolk color, shell thickness or shell strength. Similarly, no significant difference were observed among groups with regards to biochemical profile (total cholesterol, triglyceride, glucose, total protein, aspartate aminotransferase, alanine aminotransferase, albumin, and inorganic phosphorus). However, compared with the control group, we did detect significant reductions in corticosterone levels in the GABA and probiotics groups (P<0.05). On the basis of our findings in this study, it would appear that dietary GABA and probiotics can alleviate heat stress in Hy-Line parent stock, with probiotics in particular being found to promote significant improvements in the hen-day egg production, egg mass, and feed conversion of laying hens during the summer season in Korea.

Optimization of γ-Aminobutyric Acid Production by Enterococcus faecium JK29 Isolated from a Traditional Fermented Foods (전통발효식품 유래 Enterococcus faecium JK29에 의한 γ-aminobutyric acid의 생산 최적화)

  • Lim, Hee Seon;Cha, In-Tae;Lee, Hyunjin;Seo, Myung-Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.26-33
    • /
    • 2016
  • Dominant lactic acid bacteria (LAB) strains were isolated from traditional fermented foods to obtain rare ${\gamma}$-aminobutyric acid (GABA)-producing LAB. Out of 147 isolates, 23 strains that could produce GABA with 1% (w/v) L-monosodium glutamate (MSG) were first isolated. After further screening of these rare GABA-producing LAB by analysis of the glutamate decarboxylase and 16S rRNA gene sequences, Enterococcus faecium JK29 was isolated, and 1.56 mM of GABA was produced after 48 h cultivation in basic de Man, Rogosa, and Sharpe (MRS) medium. To enhance GABA production by E. faecium JK29, the culture conditions were optimized. When E. faecium JK29 was cultivated in optimized MRS medium containing 0.5% (w/v) sucrose and 2% (w/v) yeast extract with 0.5% (w/v) MSG, GABA production reached 14.86 mM after 48 h cultivation at initial conditions of pH 7.5 and $30^{\circ}C$.

Enhancement of γ-aminobutyric Acid Production by Combination of Barley Leaf and Corn Silk and Its Fermentation with Lactic Acid Bacteria (보리 잎과 옥수수 수염의 혼합과 유산균 발효를 이용한 γ-aminobutyric acid 생산 증진)

  • Kim, Hyung-Joo;Yoon, Young-Geol
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.1
    • /
    • pp.171-185
    • /
    • 2017
  • ${\gamma}$-aminobutyric acid (GABA) is a non-proteinogenic amino acid biosynthesized through decarboxylation of L-glutamic acid by glutamic acid decarboxylase. GABA is believed to play a role in defense against stress in plants. In humans, it is known as one of the major inhibitory neurotransmitters in the central nervous system, exerting anti-hypertensive and anti-diabetic effects. In this report, we wanted to enhance the GABA production from the barley leaf and corn silk by culturing them with lactic acid bacteria (LAB). The barley leaf and corn silk were mixed with various weight combinations and were fermented with Lactobacillus plantarum in an incubator at $30^{\circ}C$ for 48 h. After extracting the fermented mixture with hot water, we evaluated the GABA production by thin layer chromatography and GABase assay. We found that the fermented mixture of the barley leaf and corn silk in a nine to one ratio contained a higher level of GABA than other ratios, meaning that the intermixture and fermentation technique was effective in increasing the GABA content. We also tested several biological activities of the fermented extracts and found that the extracts of the fermented mixture showed improved antioxidant activities than the non-fermented extracts and no indication of cytotoxicity. These results suggest that our approach on combining the barley leaf and corn silk and its fermentation with LAB could lead to the possibility of the development of functional foods with high levels of GABA content and improved biological activities.

Gamma-Aminobutyric Acid and/or Carnitine Supplementation Alters Lipid and Some Immune Related Nutrient Levels in Mice

  • Soh, Ju-Ryoun;Cha, Youn-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.58-64
    • /
    • 2004
  • This study investigated the effects of carnitine and/or ${\gamma}$ -aminobutyric acid (GABA) supplementation on lipid profiles and some immune related nutrient in mice. Balb/c male mice were orally treated with either an AIN-76 diet (Con), a control diet plus carnitine (CS, 0.5 g/kg bw), a control diet plus GABA (GS, 0.5 g/kg bw) or a control diet plus carnitine plus GABA (CGS, 0.25 g/kg bw, respectively) for 6 weeks. There were no significant differences in feed consumption, energy intake, body weight gain or feed efficiency ratio among the groups during the experimental period. However, abdominal fat deposits were smaller in CS, GS and CGS groups compared with the Con group. Serum and liver triglycerides also were lower in CS, GS and CGS and serum total cholesterol was significantly lower in the CGS group compared with the Con group. Serum LDL cholesterol was lower in the CGS group and liver HDL cholesterol was significantly higher in the CS group compared with Con group. In serum, stearic acid and selecholeic acid were lower, but arachidic acid was higher in the CS group. Liver stearic acid was higher but oleic acid lower in CGS group compared with Con group. In carnitine supplemented groups, serum and liver nonesterified carnitine (NEC), acidsoluble acylcarnitine (ASAC), total carnitine (TCNE) concentrations were higher in only the CS group, not CGS group. Serum vitamin A and E concentrations were not different among the groups. These results may suggest that carnitine and/or GABA supplementation improves lipid profiles in mice, but did not affect the immune-related nutrients that we measured under the experimental conditions of this study.