• Title/Summary/Keyword: -10 region

Search Result 22,860, Processing Time 0.047 seconds

PRELIMINARY STUDY ON THE ABRUPT DENSITY ENHANCEMENT IN LOW LATITUDE REGION DETECTED BY KOMPSAT-I (KOMPSAT-I으로 관측한 저위도 이온층 밀도 급상승 현상에 대한 연구)

  • 박재홍;이재진;이은상;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2003
  • SPS(Space Physics Sensor) onboard the KOMPSAT-I, which was launched at 1999, had transmitted ionospheric plasma density and electron temperature during the solar maximum from June 2000 to August 2001, SPS IMS onboard KOMPSAT-I occasionally detected abrupt plasma density enhancement in low-latitude region, in which the plasma density abruptly increases in a narrow region. Statistical analysis of the data obtained during the entire operational period shows that the occurrence probability of these events has its peak value at the Atlantic region and at the Hawaiian region where the geomagnetic field strength is weak. And the occurrence frequency has no correlation with Dst index or F10.7 index. The correlation between plasma density and the electron temperature shows a wide variety, but the anti-correlated cases are dominant.

Characteristic Changes of the Changma Season in the 2000s

  • Lee, Jun-Youb;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.33 no.5
    • /
    • pp.422-433
    • /
    • 2012
  • The purpose of this study is to investigate the characteristic changes of the Changma season in the 2000s. To accomplish this goal, we have used daily rainfall data collected over nearly 40 years (1971 to 2010). The average summer precipitation data including the Changma season were collected from 16 weather stations that are placed across the three major regions (i.e. central region, southern region, and Jeju region) as Korea Meteorological Administration divided. These precipitation data were analyzed to find out characteristic changes of the Changma season. Results of the precipitation data comparison among the major regions that, monthly average precipitation in the central region was the highest in July; its precipitation tended to increase from May to September. In the southern region, the precipitation amount was lowest in June and tended to increase in May, September, and August. In the Jeju region, the precipitation has been the highest in June and July for the past 30 years, whereas September has been highest month in the last 10 years. The precipitation amount in the Jeju region decreased both in June and July, whereas it tended to grow in May, August and September. A correlation coefficient formula by Karl Pearson has been used to find out correlations between the Changma season and the precipitation of the major regions in 2000s and normal years. It was found that the correlation coefficient has decreased from 0.723 to 0.524 in the 2000s (2001 to 2010) compared to normal years (1971 to 2000).

Traversable Region Detection Algorithm using Lane Information and Texture Analysis (차로 수 정보와 텍스쳐 분석을 활용한 주행가능영역 검출 알고리즘)

  • Hwang, Sung Soo;Kim, Do Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.979-989
    • /
    • 2016
  • Traversable region detection is an essential step for advanced driver assistance systems and self-driving car systems, and it has been conducted by detecting lanes from input images. The performance can be unreliable, however, when the light condition is poor or there exist no lanes on the roads. To solve this problem, this paper proposes an algorithm which utilizes the information about the number of lanes and texture analysis. The proposed algorithm first specifies road region candidates by utilizing the number of lanes information. Among road region candidates, the road region is determined as the region in which texture is homogeneous and texture discontinuities occur around its boundaries. Traversable region is finally detected by dividing the estimated road region with the number of lanes information. This paper combines the proposed algorithm with a lane detection-based method to construct a system, and simulation results show that the system detects traversable region even on the road with poor light conditions or no lanes.

Determination of strut efficiency factor for concrete deep beams with and without fibre

  • Sandeep, M.S.;Nagarajan, Praveen;Shashikala, A.P.;Habeeb, Shehin A.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.253-264
    • /
    • 2016
  • Based on the variation of strain along the cross section, any region in a structural member can be classified into two regions namely, Bernoulli's region (B-region) and Disturbed region (D-region). Since the variation of strain along the cross section for a B-region is linear, well-developed theories are available for their analysis and design. On the other hand, the design of D-region is carried out based on thumb rules and past experience due to the presence of nonlinear strain distribution. Strut-and-Tie method is a novel approach that can be used for the analysis and design of both B-region as well as D-region with equal importance. The strut efficiency factor (${\beta}_s$) is needed for the design and analysis of concrete members using Strut and Tie method. In this paper, equations for finding ${\beta}_s$ for bottle shaped struts in concrete deep beams (a D-region) with and without steel fibres are developed. The effects of transverse reinforcement on ${\beta}_s$ are also considered. Numerical studies using commercially available finite element software along with limited amount of experimental studies were used to find ${\beta}_s$.

A Sensitivity and Performance Analysis for Torque Mode Switching on 2MW Direct Drive Wind Turbine Generator (2MW급 직접구동형 풍력발전기의 풍황 민감도 및 토크모드 스위칭 성능 해석)

  • Rho, Joo-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1455-1460
    • /
    • 2014
  • Wind turbine generators were designed on general regulations of wind condition. At real situations, it could be different from the design conditions. There are many control methods and definitions of transient region, because an efficient wind turbine generator control logic is the important matter in generator performance and annual energy production at real conditions. In this document, the power generation sensitivity for wind speed and turbulence intensities was defined to know the sensitive transient region. Wind conditions are applied for the ranges of 7~10m/s mean wind speed and 14~20% turbulence intensity. The sensibility of HR-D86 wind generator was increased in transient region(8~10m/s) on power curve diagram through a torque control to a pitch control. And then GH-bladed simulations was performed for performance analysis of the torque mode switching in transient region on 2MW direct drive wind generator(HR-D86) which is designed IEC class II for onshore. Through the sensitivity and performance analysis, the sensitivity for real wind condition could be the performance index for an wind generator. And the torque mode switching in transient region can increase the mean power generation on HR-D86 wind turbine generator.

A new clustering algorithm based on the connected region generation

  • Feng, Liuwei;Chang, Dongxia;Zhao, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2619-2643
    • /
    • 2018
  • In this paper, a new clustering algorithm based on the connected region generation (CRG-clustering) is proposed. It is an effective and robust approach to clustering on the basis of the connectivity of the points and their neighbors. In the new algorithm, a connected region generating (CRG) algorithm is developed to obtain the connected regions and an isolated point set. Each connected region corresponds to a homogeneous cluster and this ensures the separability of an arbitrary data set theoretically. Then, a region expansion strategy and a consensus criterion are used to deal with the points in the isolated point set. Experimental results on the synthetic datasets and the real world datasets show that the proposed algorithm has high performance and is insensitive to noise.

Characteristic of Power Consumption in Agitated Vessel Using Wire Gauge Impeller (금망임펠러를 이용한 교반조에서의 교반소요동력 특성)

  • Kim, Moon-Gab;Lee, Young-Sei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • Power consumption for wire gauge impeller in cylindrical agitated vessel was measured over a wide range of Reynolds number from laminar to turbulent flow regions. The power correlation were obtained agitation power input of WM4 at gassing condition in turbulent region, at gassing condition in transient region and at gassing condition in laminar region. Also the compared with effect of impeller diameter and blade width on agitation power input at gassing condition in turbulent region, at gassing condition in transient region and at gassing condition in laminar region.

Application of the E-$\varepsilon$turbulence numerical model to a flow and dispersion around triangular ridge( I ) (E-$\varepsilon$모델을 이용한 삼각 봉우리 주변의 유동과 확산 수치해석(I))

  • 정상진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.116-123
    • /
    • 1994
  • The E- $\varepsilon$ turbulence numerical model was applied to a flow around triangular ridge in neutral boundary layer. Scale of cavity region, mean velocity, Reynolds stress and eddy diffusivity were investigated. The height of cavity region was in satifactory agreement with the wind tunnel data while the length of cavity region was underestimated. The man wind velocities outside the cavity region were well Predicted by the model, however in cavity region the mean wind velocities of wind tunnel data were larger than the model results Reynolds stress of cavity region was overestimated by the model. The eddy diffusivity of wake region was strongly modified under the influence of triangular ridge. The local minimum of the eddy diffusivity was occured in the lee of the ridge top.

  • PDF

Design Study of 3 Segment Leg with Stable Region at low and high Speed Running (저속 및 고속주행에서 안정영역을 갖는 3 Segment Leg 설계 연구)

  • Kwon, Oh-Seok;Lee, Dong-Ha
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.230-236
    • /
    • 2011
  • In previous researches, the self-stability was studied for the spring-mass model and the two segment leg model. In these researches, it was presented that the spring-mass model has the self-stable region at relatively high speed running and the two segment leg model has the self-stable region at relatively low speed running. If the model was run in the self-stable region, the cost of transport is zero ideally. That is, actually, only the energy loss is needed to compensate for running. This means that the energy efficiency is high, running in the self-stable region. We want to have high energy efficiency at low and high speed running. So, in this paper, we propose the design direction of the three segment leg having the self-stable region at low and high speed running. And we prove the self-stable region of the three segment leg designed by the proposed design direction.

Analysis of Spray Characteristic for 3-Component Mixed Fuel (3 성분 혼합연료의 분무특성 해명)

  • Myong, Kwang-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.589-595
    • /
    • 2009
  • The instability wave formed near nozzle region grows to vortex with large scale in downstream region of spray. It plays an important role in the fuel-air mixing, combustion process and engine exhaust emissions in direct injection diesel engine. The objective of this study is to analyze effect of variant parameters (injection pressure, ambient gas density, etc.) and fuel properties on spray instability near nozzle region. Spray structure near nozzle region was investigated using a magnification photograph. A pulsed Nd-YAG laser was used as a light source, and image was taken by CCD camera. The following conclusions are drawn from this experimental analysis. In low ambient density, the effect of fuel properties on spray instability near nozzle region is dominant. In high ambient density, the effect of ambient gas on spray instability near nozzle region is dominant. High jet velocity has strong influence on spray instability.