• 제목/요약/키워드: aldose reductase activity

검색결과 80건 처리시간 0.027초

Various Biological Activities of Ramie (Boehmeria nivea)

  • Lee, Ah Young;Wang, Xiaoning;Lee, Dong Gu;Kim, Young-Mi;Jung, Yong-Su;Kim, Ho Bang;Kim, Hyun Young;Cho, Eun Ju;Lee, Sanghyun
    • Journal of Applied Biological Chemistry
    • /
    • 제57권3호
    • /
    • pp.279-286
    • /
    • 2014
  • The purpose of this study was to evaluate the biological activities of extracts of ramie (Boehmeria nivea (L.) Gaud.), hereafter referred to as Bn. Bn extracts from various collecting area were extracted with methanol. Two extracts from our study, Bn-13 and -82, showed significant antioxidant properties, likely due to their ability to scavenge free radicals. In addition, Bn extracts showed stronger anti-bacterial activity against Escherichia coli (Bn-40), Stapylococcus aureus (Bn-33), and Helicobacter pylori (Bn-05). In addition, this study was conducted to evaluate the anti-inflammatory effects of Bn extracts in lipopolyssacharide (LPS)- and interferon-${\gamma}$ (IFN-${\gamma}$)-stimulated RAW 264.7 macrophages cells. Bn-37 significantly inhibited the production LPS/IFN-${\gamma}$-induced nitric oxide. The most noteworthy anti-cancer effect was found in Bn-23. Bn-08 showed inhibition of aldose reductase. This study provides basic information for the development of functional foods.

고혈당으로 유도된 제브라피쉬 당뇨망막병증 모델에서 약용식물의 효능 평가 (In vivo Screening of Herbal Extracts on High Glucose-induced Changes in Hyaloid-Retinal Vessels of Zebrafish)

  • 이유리;정승현;이익수;김주환;김영숙;김진숙
    • 생약학회지
    • /
    • 제50권1호
    • /
    • pp.25-31
    • /
    • 2019
  • The zebrafish (Danio rerio) is an established model organism for several pathophysiological conditions which are related to human diseases. In this study, we tested the preventive effect of eight herbal extracts, which show the inhibitory effect of advanced glycation end products (AGEs) or aldose reductase (AR) in our previous study, on high glucose (HG)-induced retinal vessel dilation in larval zebrafish and analyzed the change of hyaloid vasculature. HG-induced zebrafish hyaloid vasculatures were significantly increased in the thickness compared to untreated zebrafish (P<0.001, n=6~10). Eight herbal extracts were found to have significant retinal vessel dilation on the inhibitory activity. Particularly, Brandisia hancei (twigs and fruits), Castanopsis orthacantha (leaves and twigs), Litsea japonica (leaves and twigs), Spenceria ramalana (whole plant), and Synedrella nodiflora (leaves and stems) showed potent inhibitory activity against retinal vessel dilation in HG-induced larval zebrafish.

산사 추출물의 항산화 및 항당뇨 활성 (Anti-diabetic and Anti-oxidative Activities of Extracts from Crataegus pinnatifida)

  • 남상명;강일준;신미혜
    • 동아시아식생활학회지
    • /
    • 제25권2호
    • /
    • pp.270-277
    • /
    • 2015
  • 장미과에 속한 낙엽교목인 산사나무의 열매인 산사의 항산화 및 항당뇨 관련 활성을 검토하고, 추출 용매에 따른 차이를 비교하기 위하여 총 페놀 함량, DPPH 라디칼 소거능, ABTS 라디칼 소거능, 최종당화산물 억제능, ${\alpha}$-glucosidase 억제능, aldose reductase 억제능을 측정하였다. 수율은 70% 에탄올 추출물이 33.16%로 가장 높았고, 50% 에탄올 추출물이 27.79%로 그 다음 높았으며, 물, 30% 에탄올, 100% 에탄올은 각각 21.71%, 21.88%, 19.03%를 나타내었다. 총 페놀함량은 50% 에탄올 추출물이 $41.83{\pm}0.07mg$ GAE/g으로 가장 높았고, DPPH와 ABTS 라디칼 소거능도 50% 에탄올 추출물이 각각 $80.79{\pm}0.83%$, $34.92{\pm}0.97%$로 가장 높았다. 최종 당화산물 억제능과 ${\alpha}$-glucosidase 억제능도 50% 에탄올 추출물이 $27.09{\pm}2.27%$$58.87{\pm}0.70%$로 가장 높게 나타난 반면에 AR은 물 추출물이 $30.68{\pm}1.41%$로 가장 높게 나타나면서 상이한 경향을 보였다. 이상의 결과를 종합해 보면, 알코올 농도에 따른 산사의 추출물 중 50% 에탄올 추출물이 천연 항산화제로서 가치가 있으며, 당뇨병 예방을 위한 천연물로서의 가능성도 보였으나 당뇨병 합병증 치료에 대한 효과는 미흡한 것으로 나타났다. 향후 좀 더 다양한 fraction에서의 연구와 in vivo 시험 등을 통한 추가적인 연구가 필요할 것으로 사료된다.

Alternative Isoforms of TonEBP with Variable N-termini are Expressed in Mammalian Cells

  • Kim, Hyo-Shin;Son, Sook-Jin;Kim, Seon-Nyo;Kim, Yong-Duk;Kim, Kwang-Jin;Jeon, Byeong-Hwa;Park, Jin-Bong;Lee, Sang-Do
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권3호
    • /
    • pp.135-138
    • /
    • 2007
  • Hypertonicity imposes a great deal of stress to cells since it causes rise in cellular ionic strength, which can be reduced by the accumulation of compatible osmolytes. TonEBP plays a central role in the cellular accumulation of compatible osmolytes via transcriptional stimulation of membrane transporters and aldose reductase. Alternatively spliced forms of TonEBP mRNA have previously been reported and two of them showed different transcriptional activity. In the present study, isoform-specific antibodies were produced to confirm the translation of the spliced mRNA to protein. TonEBP was immunoprecipitated by using anti-TonEBP antibody and then immunoblotted using anti-TonEBP or isoform specific antibodies to find out the expression profile of TonEBP isoforms in basal or stimulated condition. From these results, we conclude that all TonEBP isoforms are expressed in mammalian cells and their expression patterns are not same in every cells.

Induction of Cyclin D1 Proteasomal Degradation by Branch Extracts from Abeliophyllum distichum Nakai in Human Colorectal Cancer Cells

  • Park, Gwang Hun;Park, Jae Ho;Jeong, Jin Boo
    • 한국자원식물학회지
    • /
    • 제28권6호
    • /
    • pp.682-689
    • /
    • 2015
  • Abeliophyllum distichum Nakai (A. distichum) has been reported to exert the inhibitory effect on angiotensin converting enzyme and aldose reductase. Recently, our group found that branch extracts of A. distichum (EAFAD-B) induce apoptosis through ATF3 activation in human colon cancer cells. However, anti-cancer reagents exert their activity through the regulation of various molecular targets. Therefore, the elucidation of potential mechanisms of EAFAD-B for anti-cancer activity may be necessary. To elucidate the potential mechanism of EAFAD-B for anti-cancer activity, we evaluated the regulation of cyclin D1 in human colon cancer cells. EAFAD-B decreased cellular accumulation of cyclin D1 protein. However, cyclin D1 mRNA was not changed by EAFAD-B. Inhibition of proteasomal degradation by MG132 attenuated EAFAD-B-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with EAFAD-B. In addition, EAFAD-B induced cyclin D1 phosphorylation at threonine-286 and the point mutation of threonine-286 to alanine attenuated EAFAD-B-mediated cyclin D1 proteasomal degradation. Inhibitions of both ERK1/2 by PD98059 and NF-κB by a selective inhibitor, BAY 11-7082 suppressed cyclin D1 downregulation by EAFAD-B. From these results, we suggest that EAFAD-B-mediated cyclin D1 downregulation may result from proteasomal degradation through its threonine-286 phosphorylation via ERK1/2-dependent NF-κB activation. The current study provides new mechanistic link between EAFAD-B and anti-cancer activity in human colon cancer cells.

알도즈 환원효소 활성억제와 소비톨 축적 억제로 인한 벌개미취 추출물의 당뇨병성 백내장 발병 지연 효능 (Slow Development of Diabetic Cataract in Streptozotocin-induced Diabetic Rats via Inhibition of Aldose Reductase Activity and Sorbitol Accumulation by Use of Aster koraiensis Extract)

  • 김찬식;김정현;정일하;김영숙;이준;장대식;김진숙
    • 생약학회지
    • /
    • 제40권4호
    • /
    • pp.339-344
    • /
    • 2009
  • Diabetic cataract is a major complication of diabetes mellitus. Excess accumulation of sorbitol plays an important role in the pathogenesis of diabetic complications such as cataract formation. In this study, we investigated the inhibitory effect of the extract of the aerial parts of Aster koraiensis (AK) on diabetic cataractogenesis. To examine this further, we evaluated sorbitol accumulation during cataract development using streptozotocin-induced diabetic rat, an animal model of type 1 diabetes. Diabetic rats were treated orally with AK (100 mg/kg and 200 mg/kg body weight) once a day orally for 9 weeks. In vehicle-treated diabetic rats, lens opacity was increased, and lens fiber swelling and membrane rupture were observed. In addition, sorbitol accumulation in diabetic lens was markedly enhanced. However, AK treatment delayed the progression of diabetic cataract through the inhibition of sorbitol accumulation, and prevented lens fiber degeneration in a dose-dependent manner. These observations suggest that AK treatment can delay the progression of lens opacification in the diabetic rats during the early diabetic cataractogenesis.

일차 배양 혈관 평활근 세포에서 포도당 농도에 의한 엔도톡신 유도 프로스타글란딘 합성 변화 (Enhancement of Endotoxin-Induced Prostaglandin Synthesis by Elevation of Glucose Concentration in Primary Cultured Rat Vascular Smooth Muscle Cells)

  • 이수환;우현구;김지영;백은주;문창현
    • 약학회지
    • /
    • 제41권6호
    • /
    • pp.782-788
    • /
    • 1997
  • This study was designed to characterize glucose-enhancing effects on endotoxin-induced prostaglandin production in primary cultured rat vascular smooth muscle cells (VSMC). High glucose treatment significantly augmented prostaglandin (PG) synthesis in lipopolysaccharide (LPS)-stimulated VSMC and this effect was maximal at the concentration of 4mg/ml. It has been reported that increases in glucose metabolism through sorbitol pathway could alter the cytosolic $NADH/NAD^+$ ratio and this change favors de novo synthesis of diacylglycerol (DAG) and, in turn. Results in the activation of protein kinase C (PKC) in vascular tissues. Protein kinase C (PKC) inhibitors, staurosporin and H7, blocked the glucose enhancing effect, and DAG, a PKC activator, significantly increased the PG production stimuated by LPS. Sodium pyruvate, which can reverse the alteration in cytosolic NADH/NAD+ ratio, reduced the high glucose effect on PG production. And also, zopolrestat, a strong aldose reductase inhibitor, almost completely blocked the augmentation effect of glucose on PG synthesis. Arachidonic acid release was significantly increased in high glucose treated group, which implied the increase in $PLA_2$ activity was associated with glucose enhancing effect. Metabloic, labeling study clearly showed that de novo synthesis of prostaglandin H synthase-2 (PGHS-2) is greatly increased in high glucose treated group and this was mitigated by the treatment of zopolrestat. Taken together, the activation of PKC through sorbitol pathway increased the activities of $PLA_2$ and PGHS which resulted in the augmentation in LPS-induced PG production in high glucose treated VSMC.

  • PDF

Neuroprotective Effect of Epalrestat on Hydrogen Peroxide-Induced Neurodegeneration in SH-SY5Y Cellular Model

  • Lingappa, Sivakumar;Shivakumar, Muthugounder Subramanian;Manivasagam, Thamilarasan;Somasundaram, Somasundaram Thirugnanasambandan;Seedevi, Palaniappan
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.867-874
    • /
    • 2021
  • Epalrestat (EPS) is a brain penetrant aldose reductase inhibitor, an approved drug currently used for the treatment of diabetic neuropathy. At near-plasma concentration, EPS induces glutathione biosynthesis, which in turn reduces oxidative stress in the neuronal cells. In this study, we found that EPS reduces neurodegeneration by inhibiting reactive oxygen species (ROS)-induced oxidative injury, mitochondrial membrane damage, apoptosis and tauopathy. EPS treatment up to 50 µM did not show any toxic effect on SH-SY5Y cell line (neuroblastoma cells). However, we observed toxic effect at a concentration of 100 µM and above. At 50 µM concentration, EPS showed better antioxidant activity against H2O2 (100 µM)-induced cytotoxicity, ROS formation and mitochondrial membrane damage in retinoic acid-differentiated SH-SY5Y cell line. Furthermore, our study revealed that 50 µM of EPS concentration reduced the glycogen synthase kinase-3 β (GSK3-β) expression and total tau protein level in H2O2 (100 µM)-treated cells. Findings from this study confirms the therapeutic efficacy of EPS on regulating Alzheimer's disease (AD) by regulating GSK3-β and total tau proteins phosphorylation, which helped to restore the cellular viability. This process could also reduce toxic fibrillary tangle formation and disease progression of AD. Therefore, it is our view that an optimal concentration of EPS therapy could decrease AD pathology by reducing tau phosphorylation through regulating the expression level of GSK3-β.

익수지선단(益壽地仙丹)이 Streptozotocin으로 유발된 당뇨병 흰쥐의 신기능, 활성산소, 활성질소 및 Polyol Pathway에 미치는 영향 (Effects of Iksujisundan on Renal Function, Peroxynitrite Scavenging Activity and Polyol Pathway in Streptozotocin-induced Diabetic Rats)

  • 전창민;정지천
    • 대한한의학회지
    • /
    • 제28권1호통권69호
    • /
    • pp.237-248
    • /
    • 2007
  • Objectives : Diabetes is a disease in which the body does not produce or properly use insulin. Etiological studies of diabetes and its complications showed that oxidative stress might play a major role. Therefore, many efforts have been tried to regulate free oxygen radicals for treating diabetes and its complications. Iksujisundan has been known to be effective for the treatment of diabetes. The present study was carried out to investigate the effect of Iksujisundan on renal function, peroxynitrite(ONOO-) scavenging activity and polyol pathway in streptozotocin-induced diabetic rats. Methods : The crushed Iksujisundan was extracted 3 times, each time with 3 volumes of methyl alcohol at 60$^{\circ}C$ for 24 h. The extract was filtered and evaporated under a reduced pressure using a rotary evaporator to yield 87.8g. Iksujisundan extract was orally administreted at 100 mg per 1 kg of body weight for 20 days to the diabetic rats induced by streptozotocin(60mg/kg). The effects of Iksujisundan extract on the streptozotocin-induced diabetic rats were observed by measuring the serum level of glucose, insulin, lipid components, creatinine and BUN, and also the kidney levels of superoxide anion radical(${\cdot}$O2-), nitric oxide(NO) and ONOO-, and also the enzyme activities involved in the polyol pathway. Results : The effects of Iksujisundan on the streptozotocin-induced diabetic rats with regards to body weight, blood glucose and indulin levels, creatinine and BUN levels, total cholesterol and triglyceride lavels, and HDL-cholesterol levels were all shown to be good enough to prevent and cure the diabetes and its complications. Iksujisundan inhibited the generation of ${\cdot}$O2-,NO and ONOO- in the kidney of streptozotocin-induced diabetic rats. Renal aldose reductase and sorbitol dehydrogenase activities were increased in the streptozotocin-induced diabetic rats were reversed toward natural activities. Conclusions : Iksujisundan might inhibit the development of diabetes and its complications by scavenging reactive oxygen and nitrogen species, thereby by reducing oxidative stresses and also by regulating the activities of polyol pathway enzymes, all of which could help to recover kidney function.

  • PDF

Streptozotocin으로 유발된 흰쥐의 당뇨병성 신증에서 가미구기환동환(加味枸杞還童丸)이 Oxidative Stress 및 Polyol Pathway에 미치는 영향 (Effects of Gamigukihwandong-hwan on Renal Function, Oxidative Stress and Polyol Pathway in Diabetic Nephropathy Rats)

  • 정형철;정지천
    • 동의생리병리학회지
    • /
    • 제21권3호
    • /
    • pp.671-678
    • /
    • 2007
  • Diabetes is a disease in which the body does not produce or properly use insulin. Etiological studies of diabetes and its complications showed that oxidative stress might play a major role. Therefore, many efforts have been tried to regulate free oxygen radicals for treating diabetes and its complications. Gamigukihwandong-hwan has been known to be effective for the treatment of diabetes. The present study was carried out to investigate the effect of Gamigukihwandong-hwan on renal function, peroxynitrite (ONOO$^-$) scavenging activity and polyol pathway in streptozotocin-induced diabetic rats. The crushed Gamigukihwandong-hwan was extracted 3 times, each time with 3 volumes of methyl alcohol at 60$^{\circ}C$ for 24 h. The extract was filtered and evaporated under a reduced pressure using a rotary evaporator to yield 74.95 g. Gamigukihwandong-hwan extract was oral-administered 100 mg per 1 kg of body weight for 20 days to the diabetic rats induced by streptozotocin (60 mg/kg). The effects of Gamigukihwandong-hwan extract on the streptozotocin-induced diabetic rats were observed by measuring the serum level of glucose, insulin, lipid components, creatinine and BUN, and also the kidney levels of superoxide anion radical (${\cdot}O_2^-$), nitric oxide (NO) and ONOO$^-$, and also the enzyme activities involved in polyol pathway. The Effects of Gamigukihwandong-hwan on the streptozotocin-induced diabetic rats with regards to body weight, blood glucose and insulin levels, creatinine and BUN levels, total cholesterol and triglyceride levels, and HDL-cholesterol levels were all shown to be good enough to cure and prevent the diabetes and its complications. Gamigukihwandong-hwan inhibited the generation of ${\cdot}O_2^-$, NO and ONOO$^-$ in the kidney of streptozotocin-induced diabetic rats. Renal aldose reductase and sorbitol dehydrogenase activities were increased in the streptozotocin-induced diabetic rats, whereas the ones in the Gamigukihwandong-hwan administered group among the streptozotocin-induced diabetic rats were reversed toward the natural activities. Gamigukihwandong-hwan might inhibit the development of diabetic nephropathy by scavenging reactive oxygen and nitrogen species, thereby by reducing oxidative stresses and also by regulating the activities of polyol pathway enzymes, all of which could help to recover the function of kidney.