• Title/Summary/Keyword: ��칭

Search Result 852, Processing Time 0.025 seconds

Identification of the Hualien Soil-Structure Interaction System Using Earthquake Response Data (지진계측자료를 사용한 화련 지반-구조물 상화작용계의 미지계수 추정)

  • 최준성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.249-258
    • /
    • 2000
  • 본 논문에서는 지반-구조물 상호작용계의 강성에 관련된 물성값들을 지진계측결과를 바탕으로 효과적으로 추정할 수 있는 방법에 대해 연구하였으며 제안된 방법의 검증은 국제공동 연구의 일환으로 최근 대만의 화련에 건설된 대형지진시험구조물에서 계측된 지진 응답을 사용하여 수행하였다. 지반-구조물 상호작용계의 지진응답해석을 위해서 구조물과 근역지반은 축대칭유한요소로 모형화하고 원역지반은 축대칭 무한요소를 사용하였으며 이때 입력 지진하중은 부구조법에 근거한 파입력기법이 고려되었다 지진계측결과를 사용하여 각 영역의 물성값을 제약적 최속강하법을 사용하여 추정하였는데 추정된 계수들을 사용하여 계산된 지진응답이 계측치와 매우 잘 일치하여 추정결과의 타당성을 검증할 수 있었다.

  • PDF

An Analytical Study on Supersonic Under-Expanded Jet (초음속 부족팽창 제트유동에 관한 해석적 연구)

  • 김희동;이호준;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.46-54
    • /
    • 1997
  • Based upon the results of numerical calculation, empirical scaling equations were made for supersonic under-expanded jets in both axisymmetric and two dimensional flows. The objective of the present study is to find a straightforward method that can predict the under-expanded supersonic jets issuing from various kinds of nozzles. The present empirical equations were agreed with the calculation results of total variation diminishing difference scheme. The supersonic under-expanded jets operating at a given pressure ratio could be well predicted by the present scaling equations.

  • PDF

An Analysis of Axisymmetric Two Dimensional Heat Diffusion Equation to Measure the Thermal Diffusivity of Layered Materials (積層材料의 熱擴散係數測定을 위한 軸對稱 二次元 熱擴散方程式의 解析)

  • 김진원;이흥주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.349-356
    • /
    • 1986
  • For the extension of application in flash method measuring the thermophysical properties of materials, the heat diffusion equation with the heat transfer loss from front, rear, and circumferential surfaces of two layer cylinderical sample is mathematically analyzed by means of Green's function for axially symmetric pulse heating on the front of samples. The solutions are applied to determine the unknown thermal diffusivity of the two materials and analyzed the measurement error due to heat loss and finite pulse time effects.

Effect Of The Separating Shear Layer on the Flow Over an Axisymmetric Backward-Facing Step (박리전단층이 축대칭 하향단흐름에 미치는 영향)

  • 부정숙;김경천;양종필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1102-1115
    • /
    • 1995
  • An experimental study on the flow over the axisymmetric backward-facing step was carried out. The purpose of the present study is to investigate the effect of the boundary layer thickness at the separation point on the reattachment length and to understand the structure of the recirculating flows. Local mean and fluctuating velocity components were measured in the separating and reattaching axisymmetric turbulent boundary layer over the wall of convex cylinder placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. The study demonstrated that the reattachment length increases with increasing boundary layer thickness. It was also observed that the reverse flow velocity and turbulent kinetic energy decrease with an increase in the momentum thickness at the separation point. The measured velocity field suggests that the boundary layer thickness at the separation can affect definitely on the formation of corner eddy.

Analysis of Amplitude Distortion in Super Wide-Band AM Signal Transmission (초광대역 AM 신호전송에서의 진폭왜율해석)

  • 이충웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.8 no.3
    • /
    • pp.27-32
    • /
    • 1971
  • This paper presents the analysis of the amplitude distortion occurring in the transmission of super wideband AM signal when the amplitude and phase variations of the upper and lower sidebands of the AM signal are symmetrical, and odd symmetrical with respect to the carrier. It is shown that the case where the amplitude variations of the upper and lower sidebands of AM signal are symmetrical with respect to the carrier while the phase variations of the upper and lower sidebands are odd symmetrical with respect to the carrier induce, no amplitude distortion in AM signal transmission.

  • PDF