• Title/Summary/Keyword: 힘평형

Search Result 155, Processing Time 0.025 seconds

Determination of Surface Energy by Means of Home-Made Goniometer and Image Analyzing Software for Contact Angle Measurement (수제 접촉각 측정기와 영상 분석 프로그램을 이용한 표면에너지의 측정)

  • Cho, Seo-Rin;Cho, Han-Gook
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.432-438
    • /
    • 2013
  • We report a contact angle goniometer that can be easily assembled and used in high school and general chemistry experiments. It consists of an LED flash, a sample stand, and a camera fixed on an optical bread board, and the sample area is covered to block light from outside with a box with holes on both sides. ImageJ, free image analyzing software and a JAVA plugin (Drop_analysis) were used to determine the contact angle of liquid drop resting on solid surface. The contact angles of various liquids were successfully measured on various surfaces. The solid surface energies have also been determined using the Owen-Wendt method from the contact angles of $H_2O$ and $CH_2I_2$. The results reasonably agree with the previously reported values, showing the surface characteristics and modification as well as the dispersive and polar contributions. These contact angle goniometer and method for determination of the contact angle and surface energy can be applied to observation of various surface properties including wettability, hydrophilicity, and water repelling. Students can learn how the surface properties are related to the intermolecular interactions and gain experience about the equilibrium between the related forces, optics, and mathematical derivations.

Strut-and-Tie Model for Shear Strength of Reinforced Concrete Squat Shear Walls (저층형 철근콘크리트 전단벽의 전단강도 평가를 위한 스트럿-타이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • The previous strut-and-tie models (STMs) to evaluate the shear strength of squat shear walls with aspect ratio less than 2.0 do not consider the axial load transfer of concrete strut and individual shear transfer contribution of horizontal and vertical shear reinforcing bars in the web. To overcome the limitation of the existing models, a simple STM was established based on the crack band theory of concrete fracture mechanics. The equivalent effective width of concrete strut having a stress relief strip was determined from the neutral axis depth and effective factor of concrete strength. The shear transfer mechanism of shear reinforcement at the extended crack band zone was calculated from an internally statically indeterminate truss system. The shear transfer capacity of concrete strut and shear reinforcement was then driven using the energy equilibrium in the stress relief strip and crack band zone. The shear strength predictions of squat shear walls evaluated from the current models are in better agreement with 150 test results than those determined from STMs proposed by Siao and Hwang et al. Furthermore, the proposed STM gives consistent agreement with the observed trend of the shear strength of shear walls against different parameters.

Liquefaction-Induced Uplift of Geotechnical Buried Structures: Centrifuge Modeling and Seismic Performance-Based Design (지반 액상화에 의한 지중 매설구조물의 부상: 원심모형시험 및 내진성능설계)

  • Kang, Gi-Chun;Iai, Susumu
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.5-16
    • /
    • 2012
  • Geotechnical buried structures with relatively light weight have been suffering from uplift damage due to liquefaction in the past earthquakes. The factor of safety approach by Koseki et al. (1997a), which is widely used in seismic design, predicts the triggering of uplift. However, a method for "quantitative" estimates of the uplift displacement has yet to be established. Estimation of the uplift displacement may be an important factor to be considered for designing underground structures under the framework of performance-based design (ISO23469, 2005). Therefore, evaluation of the uplift displacement of buried structure in liquefied ground during earthquakes is needed for a performance-based design as a practical application. In order to predict the uplift displacement quantitatively, a simplified method is derived based on the equilibrium of vertical forces acting on buried structures in backfill during earthquakes (Tobita et al., 2012). The method is verified through comparisons with results of centrifuge model tests and damaged sewerage systems after the 2004 Niigata-ken Chuetsu, Japan, earthquake. The proposed flow diagram for performance-based design includes estimation of the uplift displacement as well as liquefaction limit of backfill.

Modeling on Rheological Behavior of Cement Paste under Squeeze Flow (압축 유동하에 있는 시멘트 페이스트의 유변학적 거동에 관한 모델링)

  • Min, Byeong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.405-413
    • /
    • 2020
  • The normal stress of cement paste measured under squeeze flow is divided into an elastic solid region at strains between 0.0003 and 0.003 and a strain-hardening region at strains of 0.003 and 0.8. A modeling equation at the strain-hardening region was proposed. First, from the viewpoint of fluid behavior, the power-law non-Newtonian fluid model, with a power-law consistency (m) of 700 and a power index (n) of 0.2, was applied. The results showed good agreement with the experimental results except for an elastic solid region. Second, from the viewpoint of ductile yielding solid behavior, the force balance model was applied, and the friction coefficient between the sensor part measuring the load and the surface of the cement paste was derived as a polynomial of the normal strain by applying the half-interval search method to the experimental data. The results showed good agreement with the experimental results only in the middle normal strain region at strains between 0.003 and 0.3. The rheological behavior of the cement paste under squeeze flow was more consistent with the experimental results from the viewpoint of power-law non-Newtonian fluid behavior than from the viewpoint of ductile yielding solid behavior in the strain-hardening region.

Analysis of Secondary School Science Teacher's Concept on Atmospheric Pressure (중등학교 과학 교사들의 대기압에 관련된 개념 분석)

  • Lee, Jee-Hee;Jeong, Jin-Woo;Woo, Jong-Ok
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.3
    • /
    • pp.560-570
    • /
    • 2002
  • This study was focused on whether secondary science teachers have consistent, integrative scheme on the definition of atmospheric pressure and phenomena caused by air pressure. We had made questionnaire and let 94 science teachers answer. We sorted the responses according to their major, school and compared them with the description in textbooks. The result can be summarized into three findings. First of all, teachers whose major is chemistry have strong tendency to understand that atmospheric pressure is caused by molecular motion though it, in textbooks, is defined as the pressure by weight of air mass. The half of respondents believed that decreasing of atmospheric pressure in high altitude is due to molecular motions, while most textbook says decrease in the weight of air mass. Secondly, many science textbooks show that air mass expands, rises, becomes less dense and the pressure of atmosphere becomes low when it receives heat. So, most of respondents explained low pressure is formed by lower density. Thirdly, they answered that they just teach the phenomena of air pressure by using the textbooks which mainly deal with the present state rather than a principle. In conclusion, the science textbooks should present the exact description and consolidated structures of those concepts to prevent students from having misconceptions on air pressure. In addition, training program for science teachers would be necessary to reconsider and explore the natural phenomena in various viewpoints.

Nonlinear Analysis of PSC Girders with External Tendons (외부강선으로 긴장된 PSC 거더의 비선형 해석)

  • Choi, Kyu-Chon;Lee, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.303-314
    • /
    • 2010
  • A study for the nonlinear analysis method of prestressed concrete(PSC) girders with external tendons is presented. The PSC girders with external tendons show the complex nonlinear behavior due to the slip of external tendons at deviator and the change of eccentricity between the girders and external tendons. The external tendon between anchorage-deviator or deviator-deviator is modeled as an assemblage of the curved elements. The slip effect of the external tendon at deviator is taken into account using the force equilibrium relationship between the friction force and the driving force at each deviator. The finite element model and analysis method of the external tendon suggested herein are integrated in the nonlinear analysis program of segmentally erected PSC frames developed by the authors. The proposed analysis method is verified through the comparison of the analysis and experimental results obtained from other investigators. From the ultimate analysis results of PSC beams with external tendons having different number of deviators, the yielding and ultimate loads of PSC beams found to be increased as the number of deviators are increased. In addition, the ultimate capacity of the PSC beam increases according to the increase of friction coefficient between deviator and external tendon, whereas found to decease over the certain value of friction due to the effect of the moment transmitted to the member by the friction force exerted from the external tendon.

Direct Inelastic Strut-Tie Model Using Secant Stiffness (할선강성을 이용한 직접 비탄성 스트럿-타이 모델)

  • Park Hong-Gun;Kim Yun-Gon;Eom Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.201-212
    • /
    • 2005
  • A new strut-tie model using secant stiffness, Direct Inelastic Strut-Tie Model, was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of struts and ties because it can analyzes the inelastic behavior of structure using iterative calculations for secant stiffness. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and its advantages were highlighted by the comparison with the traditional strut-tie model. The Direct Inelastic Strut-Tie Model, as an integrated analysis/design method, can directly address the design strategy intended by the engineer to prevent development of macro-cracks and brittle failure of struts. Since the proposed model can analyze the inelastic deformation, indeterminate strut-tie model can be used. Also, since the proposed model controls the local deformations of struts and ties, it can be used as a performance-based design method for various design criteria.

Review of the Structural Shape for Aft Transition Ring of Submarine (잠수함 함미 트랜지션 링 구조 형상에 대한 고찰)

  • Oh, Dohan;Ahn, Namhyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.936-944
    • /
    • 2019
  • Submarines, which have been called an invisible force, are strategic underwater weapon systems that perform missions such as anti-surface warfare, anti-submarine warfare, and high payoff target strikes with the advantage of underwater covertness. A submarine should be able to withstand the hydrostatic pressure of the deep sea. In this respect, the submarine pressure hull, as the main structural system to resist the external pressure corresponding to the submerged depth, should ensure the survivability from hazards and threats such as leakage, fires, shock, explosion, etc. To do this, the initial scantling of the submarine pressure hull must be calculated appropriately in the concept design phase. The shape of the aft transition ring varies according to its connection with the submarine aft end conical structure, pressure hull cylindrical part, and non-pressure hull of the submarine; the design of the aft transition ring should not only take into account stress flow and connectivity but also the cost increase due to the increased man-hours of its complex geometry. Therefore, trade-off studies based on the four different shapes of the aft transition ring are carried out considering both the review of the structural strength through nonlinear finite element analysis (FEA) and economic feasibility by reviewing the estimations of the manufacturing working days and material costs. Finally, the most rational structural aft transition ring shape for a submarine amongst four reviewed types was proposed.

Numerical Experiment for the Estimation of Equivalent Resistance Coefficient for the Simulation of Inundation over Densely Populated Structures (구조물 밀집지역 범람수치모의를 위한 상당저항계수 산정 수치실험)

  • Kim, Hyeong-Seok;Choi, Jun-Woo;Ko, Kwang-Oh;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.532-539
    • /
    • 2008
  • Kwon et al.(2008) carried out a hydraulic experiment in order to evaluate Manning coefficient, which implicates flow resistance due to bottom friction as well as drag caused by the squared piers higher than water depth and arranged with equal intervals, under the flow condition with a constant drag coefficient, $Re>10^4$. And, based on the equation of equilibrium, they proposed a formula for the equivalent resistant coefficient including empirical drag interaction coefficient obtained by using the experimental results. In this study, the hydraulic experiment was simulated using FLOW-3D, a 3-dimensional computational fluid dynamic code. The computations were compared with the experiment results as well as the semi-theoretical formula, and the comparisons show a good agreement. From the agreement, it was confirmed that when flow resistance bodies were higher than water depth, Manning n value increases with 2/3 power of water depth as shown in the theoretical formula and that drag interaction coefficient was dominated by their intervals.

Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy (자동차 연비향상을 위한 복합재료 적용 타당성에 관한 연구)

  • Ju, Yeon Jin;Kwon, Young-Chul;Choi, Heung Soap
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.284-289
    • /
    • 2019
  • In the present paper, the dynamic force-moment equilibrium equations, driving power and energy equations are analyzed to formulate the equation for fuel economy(km/liter) equivalent to the driving distance (km) divided by the fuel volume (liter) of the vehicle, a selected model of gasoline powered KIA K3 (1.6v). In addition, the effects of the dynamic parameters such as speed of vehicle (V), vehicle total weight(M), rolling resistance ($C_r$) between tires and road surface, inclined angle of road (${\theta}$), as well as the aerodynamic parameters such as drag coefficient ($C_d$) of vehicle, air density(${\rho}$), cross-sectional area (A) of vehicle, wind speed ($V_w$) have been analyzed. And the possibility of alternative materials such as lightweight metal alloys, fiber reinforced plastic composite materials to replace the conventional steel and casting iron materials and to reduce the weight of the vehicle has been investigated by Ashby's material index method. Through studies, the following results were obtained. The most influencing parameters on the fuel economy at high speed zone (100 km/h) were V, the aerodynamic parameters such as $C_d$, A, ${\rho}$, and $C_r$ and M. While at low speed zone (60 km/h), they are, in magnitude order, dynamic parameters such as V, M, $C_r$ and aerodynamic ones such as $C_d$, A, and ${\rho}$, respectively.