• Title/Summary/Keyword: 힌지기구

Search Result 29, Processing Time 0.014 seconds

컴플라이언스 기구를 이용한 다축 나노 위치결정 시스템의 개발 : PART 1 설계 및 해석

  • 박성령;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.137-137
    • /
    • 2004
  • 최근, 나노 위치결정 시스템이 우주항공, 광통신, 의학 등 많은 분야에서 사용되고 있다. 이러한 나노위치결정 시스템에 있어서 가장 중요한 것은 안정성이다 열팽창과 가공에 의한 오차를 줄이기 위해 단일재료를 사용하고 대칭구조로 구성해야만 한다. 또한 나노 스케일의 분해능을 가지기 위해서는 스틱 슬립(stick-slip) 마찰이나 백래쉬(backlash) 기구가 없어야만 가능하다. 이러한 조건들을 만족하기 위해서 선행 연구자들은 유연힌지(flexure hinge)를 사용한 컴플라이언스 기구(compliance mechanism)를 제안하였고 이미 마이크로/나노 위치결정 시스템에 대한 연구와 개발이 이루어졌다.(중략)

  • PDF

Optimal Seismic Design Method Based on Genetic Algorithms to Induce a Beam-Hinge Mechanism in Reinforced Concrete Moment Frames (철근콘크리트 모멘트골조의 보-힌지 붕괴모드를 유도하는 유전자알고리즘 기반 최적내진설계기법)

  • Se-Woon Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.399-405
    • /
    • 2023
  • This study presents an optimal seismic design method based on genetic algorithms to induce beam-hinge collapse mechanisms in reinforced concrete moment frames. Two objective functions are used. The first minimizes the cost of the structure and the second maximizes the energy dissipation capacity of the structure. Constraints include strength conditions of columns and beams, minimum conditions for column-to-beam flexural strength ratio, and conditions for preventing plastic hinge occurrence of columns. Linear static analysis is performed to evaluate the strength of members, whereas nonlinear static analysis is carried out to evaluate energy dissipation capacity and occurrence of plastic hinges. The proposed method was applied to a four-story example structure, and it was confirmed that solutions for inducing a beam-hinge collapse mechanism are obtained. The value of the column-beam flexural strength ratio of the obtained design was found to be larger than the value suggested by existing seismic codes. A more robust strategy is needed to induce a beam-hinge collapse mode.

A Study on the Shape Design of Cylindrical Cam in a Folder Hinge Mechanism for Mobile Phones (휴대폰 폴더힌지기구를 위한 원통캠 형상 설계에 관한 연구)

  • Lee S.J.;Park J.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1613-1616
    • /
    • 2005
  • In this paper, we developed an algorithm of generating cam contour curve for hinge mechanism of folder-type mobile phone. The main feature of this hinge mechanism is that we can operate uniform torque to open or close the mobile phone. We divided the opening or closing intervals of the cam into finite sub-intervals, and then we determined the cam contour curve of each sub-interval as a parabolic curve. Finally, these finite parabolic curves form the total cam contour. We can design single cam, which composed moving cam with contour curve and fixed cam that plays only roller, and twin cam with contour curve that is made up the pair of two cams symmetrically.

  • PDF

A Study on the Contour Design in the Hinge Mechanism for a Folder of a Mobile Phone (휴대폰 폴더용 힌지기구의 윤곽 설계에 관한 연구)

  • Park, Jong-Keun;Lee, Soo-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.86-94
    • /
    • 2008
  • A total stroke of an opening or closing motion of a hinge mechanism in a folder-type mobile phone is composed of two portions. In the first portion, human fingers act a force to open or close the folder. In this portion, the rotating folder compresses the coil spring installed in the mechanism. In the last portion, this compressed coil spring generates a torque to rotate the folder. The main merit of this study is that we have designed a hinge mechanism to be operated by a uniform torque in the first portion of the total stroke. The uniform torque means that it is constant along the folder's swing angle. This mechanism will give softer feeling to human fingers. A pair of contours in the mechanism plays an important role. It transforms rotation into translation in the first portion; on the other hand, it transforms translation into rotation in the last portion. In this study, we have developed an algorithm to obtain the pair of contour curves. We divided the total contour curves into finite sub-intervals. Assuming that the curves in every sub-interval are parabolas, we have obtained the coefficients of them by solving systems of nonlinear equations recursively.

A Study on the Contour Design of the Hinge Mechanism for a Mobile Phone Driven by Continuous Torques (연속적인 회전력으로 작동하는 휴대폰 힌지기구의 윤곽 설계에 관한 연구)

  • Park, Jong-keun;Lee, Soo Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.8-18
    • /
    • 2010
  • A total stroke of an opening or closing motion of a hinge mechanism for a folder-type mobile phone is composed of two portions. In the first portion, human fingers act a torque to open or close the folder. In this portion, the rotating folder compresses the coil spring installed in the hinge mechanism. In the last portion, this compressed coil spring generates a torque to rotate the folder. In this study, we have developed an algorithm to design a hinge mechanism to be operated by an arbitrary continuous torque in the first portion of the total stroke. Consequently, we can design hinge mechanisms that satisfy various demands of consumers. A pair of contours installed in the mechanism plays an important role. It transforms the folder's rotational motion into translation to compress the coil spring in the first portion; on the other hand, it transforms translational motion into the folder's rotation in the last portion. Using this algorithm we have designed the pair of the contour curves operated by an arbitrary continuous torque.

Kinematic Analysis of a 6-DOF Ultra-Precision Positioning Stage Based on Flexure Hinge (플렉셔 힌지 기반 6-자유도 초정밀 위치 결정 스테이지의 기구학 해석)

  • Shin, Hyun-Pyo;Moon, Jun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.579-586
    • /
    • 2016
  • This paper describes kinematic analysis of a 6-degrees-of-freedom (DOF) ultra-precision positioning stage based on a flexure hinge. The stage is designed for processes which require ultra-precision and high load capacities, e.g. wafer-level precision bonding/assembly. During the initial design process, inverse and forward kinematic analyses were performed to actuate the precision positioning stage and to calculate workspace. A two-step procedure was used for inverse kinematic analysis. The first step involved calculating the amount of actuation of the horizontal actuation units. The second step involved calculating the amount of actuation of the vertical actuation unit, given the the results of the first step, by including a lever hinge mechanism adopted for motion amplification. Forward kinematic analysis was performed by defining six distance relationships between hinge positions for in-plane and out-of-plane motion. Finally, the result of a circular path actuation test with respect to the x-y, y-z, and x-z planes is presented.

Derivation of Estimating Formulas for Seismic Strength of RC Frames Designed to Gravity Loads (중력하중에 대하여 설계된 RC 골조의 내진 저항력 추정식의 유도)

  • 이영욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • The seismic design regulations have not been applied to the low-rised buildings which are less than 6 stories in Korea. For these buildings which are designed only for gravity loads, theoretical formulas which can estimate the seismic strength of building are derived. The column hinge sway and beam hinge sway mechanism are assumed for the formulars. For the comparisons with the formulas, the results of push-over analyses of 3 and 4 storied buildings are used. It can be shown that the estimating formulas correspond well with the push-over analyses. And the seismic strength of building has a little relations with the number of bay and becomes larger as the building becomes lower. Also, as the ratio and strength of reinforcing steel increase, the seismic strength of building is increased.

Study on Vibrated Cutting Blade with Hinge Mechanism (힌지구조 진동절단장치에 관한 연구)

  • Kang, Dong-Bae;Ahn, Joong-Hwan;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.443-448
    • /
    • 2010
  • Rapid advance in information technology requires high performance devices with compact size. Integrated multi-layer electronic element with different functions enables those compact devices to possess various performances and powerful capabilities. In mass production, the multi-layer electronic element is manufactured as a bulk type with a large number of parts for productivity. However, this may cause the electronic part to be damaged in the cutting process of the bulk elements to separate into each part. Therefore the cutting performance of multi-layer element bulk is playing an important role in the view of production efficiency. This study focuses on the cutting characteristics of multi-layer electronic elements. In order to increase the efficiency, the vibration cutting method was applied to the blade cutting machine. Flexure hinge structure, which is an physical amplifier of increasing displacement, was attached to the vibration cutting device for machining efficiency. The behaviors of flexure hinge were modeled with Lagrange equation and simulated with finite element method (FEM). Performance of hinge structure was verified by experimental modal analysis (EMA) for hinge structure to be tuned to the specific mode of vibrations. Cutting experiments of multi-layer elements were conducted with the proposed vibrating cutting module, and the characteristics was analyzed.

Equivalent Plastic Hinge Length Model for Flexure-Governed RC Shear Walls (휨 항복형 철근콘크리트 전단벽의 등가소성힌지길이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • The present study proposes a simple equation to straightforwardly determine the potential plastic hinge length in boundary element of reinforced concrete shear walls. From the idealized curvature distribution along the shear wall length, a basic formula was derived as a function of yielding moment, maximum moment, and additional moment owing to diagonal tensile crack. Yielding moment and maximum moment capacities of shear wall were calculated on the basis of compatability of strain and equilibrium equation of internal forces. The development of a diagonal tensile crack at web was examined from the shear transfer capacity of concrete specified in ACI 318-11 provision and then the additional moment was calculated using the truss mechanism along the crack proposed by Park and Paulay. The moment capacities were simplified from an extensive parametric study; as a result, the equivalent plastic hinge length of shear walls could be formulated using indices of longitudinal tensile reinforcement at the boundary element, vertical reinforcement at web, and applied axial load. The proposed equation predicted accurately the measured plastic hinge length, providing that the mean and standard deviation of ratios between predictions and experiments are 1.019 and 0.102, respectively.