Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.11a
/
pp.125-128
/
2015
본 논문에서는 지역 최빈값과 가중치를 이용하여 새로운 히스토그램 평활화 방법을 제안한다. 여러 개의 평균명도값을 사용하여 히스토그램을 분할하는 기존 방식과는 달리 지역 최빈값과 전체 평균명도값을 사용하여 히스토그램을 분할한다. 지역 최빈값 산출 과정에서 지역의 범위를 조정할 수 있어 융통성 있는 히스토그램 분할 처리가 가능하다. 또한 히스토그램 분할 영역을 가중치에 기반해 새로운 영역의 히스토그램으로 분할한다. 해당 방법을 통해 발생빈도가 높은 명도의 과도한 변화 없이 화질개선 면에서 기존 히스토그램 평활화보다 좋은 효과를 얻을 수 있다. 다양한 크기와 히스토그램 분포를 가지는 영상을 대상으로 실험한 결과, 기존 히스토그램 평활화보다 광범위하게 사용될 수 있음을 확인하였고 특히 한쪽으로 치우쳐진 영상에 있어 더욱 효과적임을 알 수 있었다.
Wang and Ward developed an image contrast enhancement method called WTHE (Weighted and Thresholded Histogram Equalization). In this paper, we propose an improved variant of WTHE called DWTHE(Decomposable WTHE) that enhances WTHE through the use of histogram decomposition. Specifically, DWTHE divides an input histogram by using image's mean brightness or equally-spaced brightness points, computes a probability value for each sub-histogram, modifies the sub-histograms by using those probability values as weights, and then performs histogram equalization on the modified input histogram. As opposed to WTHE that uses a single weight, DWTHE uses multiple weights derived from histogram decomposition. Experimental results show that the proposed method outperforms the previous histogram equalization based methods.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.532-534
/
2003
본 논문에서는 인쇄체 우편주소 영상에서 smearing과 히스토그램 분석을 이용한 고속의 문자열 기울기 보정 및 분할 방법을 제안하였다. 제안한 방법에서는 입력 영상을 가분할 하고, 각각의 가분할 영상에 대한 수평 히스토그램을 분석하여 기울기 측정 및 보정을 수행하였다. 문자열 분할 단계에서는, 기울기가 보정된 영상에 smearing을 수행하고, 영상에 존재하는 잡영 및 각종 바코드를 제거하고, 수평 히스토그램 분석을 통해 최종 문자열 분할 결과를 도출하였다. 제안한 방법을 사용한 실험에서 2,000 장의 테스트 영상 중 1,989장의 영상에서 정확한 문자분할 결과를 얻을 수 있었으며, 제안한 방법이 유효함을 보였다.
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.1442-1445
/
2015
본 논문은 SAR 영상에서 객체를 추출하는 새로운 방법으로 특징점 기반 분할 히스토그램 기법을 제안한다. 제안하는 방법은 영상 히스토그램에서 객체로 추정될 수 있는 영역을 세밀하게 추출하기 위해 영상에서 특징점을 추출한 후, 특징점의 밝기를 기준으로 히스토그램을 분할한다. 분할 히스토그램이 배경과 객체 성분을 모두 포함하고 있을 경우 해당 영역의 혼합 확률밀도함수가 교차되는 임계점을 계산한다. 계산된 임계점을 기준으로 현재 영역이 전체 영상에서 차지하는 비율을 비교하여 배경과 객체 여부를 판단한다. 제안하는 방법은 무인 감시 정찰 시스템 등 다양한 응용 기술에 활용될 수 있을 것으로 기대한다.
This paper proposes two new image contrast enhancement methods, RSWHE (Recursively Separated and Weighted Histogram Equalization) and RSWHS (Recursively Separated and Weighted Histogram Specification). RSWHE is a histogram equalization method based on histogram decomposition and weighting, whereas RSWHS is a histogram specification method based on histogram decomposition and weighting. The two proposed methods work as follows: 1) decompose an input histogram based on the image's mean brightness, 2) compute the probability for the area corresponding to each sub-histogram, 3) modify the sub-histogram by weighting it with the computed probability value, 4) lastly, perform histogram equalization (in the case of RSWHE) or histogram specification (in the case of RSWHS) on the modified sub-histograms independently. Experimental results show that RSWHE and RSWHS outperform other methods in terms of contrast enhancement and mean brightness preservation as well.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.283-286
/
2007
임계값을 이용한 영상 분할은 대표적인 영상 분할 기법으로 Otsu의 임계값 결정법, Fuzzy 엔트로피를 이용한 H&W의 기법 및 Clustering을 이용한 Kwon의 기법 등 많은 방법이 있다. 대부분의 임계값 결정 기법은 영상에서 얻어진 빈도수 히스토그램의 분석을 통해서 임계값을 결정한다. 특히 Otsu의 임계값 결정 기법은 빈도수 히스토그램의 분산을 최대화하는 방법으로 임계값을 결정하는 빈도수 히스토그램에 기반한 대표적 기법이다. 하지만 영상 기술이 발전함에 따라서 하나의 임계값으로부터 영상을 이진화 하는 기법은 효용성이 떨어지고 있다. 따라서 다중의 임계값을 결정하는 효과적인 방법이 필요하다. 본 논문에서는 그레이 레벨간의 관계성을 파악하고 이러한 관계성으로부터 다중의 임계값을 결정하는 기법을 제안한다. 제안된 기법의 효용성은 모의실험에서 다중 임계값을 사용한 분할영상을 통해서 보인다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.11a
/
pp.150-153
/
2014
영상 표시 장치에서 대조 이미지의 왜곡 현상을 보완하기 위해 히스토그램 평활화(Histogram Equalization)와 플래토 평활화(Plateau Equalization)가 사용된다. 히스토그램 평활화(Histogram Equalization)를 이용하여 명암대비를 증가 시킬 경우 과도한 이미지의 밝기 변화에 따른 과포화 현상이 발생하며 실시간 시스템에서는 물체 추적에 왜곡 현상이 발생한다. 특히, 적외선 영상(infrared image)과 같이 명암비가 한쪽으로 치우쳐 있는 영상들을 명암비를 개선하기 위해서는 플래토 평활화(Plateau Equalization)와 같은 영상 개선 방법이 필수적이다. 플래토 평활화에서는 임계값을 사용하는 방법이 제시되고 있지만 실험에 의한 최적 임계값을 찾아내는 방식이며, 이 방법은 입력되는 새로운 영상마다 임계값을 실험에 의해 매번 반복해서 도출해야 문제점이 있다. 본 논문에서 제안하는 방법은 과포화 되는 이미지 영역의 문제를 해결하기 위해 제시하는 방법으로 히스토그램 평활화(Histogram Equalization)의 동적 분할하는 알고리즘에 근거하되, 입력 영상에따라 적응적으로 임계값을 설정하는 기법을 제안한다. 실험을 통해 제안하는 방법이 실시간 영상에서 기존의 동적분할 히스토그램에 비해 자연스럽게 명암비를 개선하여 과포화 되거나 중요한 정보를 누락하여 왜곡 되지 않게 자연스러운 화면을 재생하는 방법을 제안한다.
Journal of Korea Society of Industrial Information Systems
/
v.8
no.4
/
pp.46-54
/
2003
In this paper, we propose segmentation algorithm for MR brain images using the histogram of T1-weighted, T2-weighted and PD images. Segmentation algorithm is composed of 3 steps. The first step involves the extraction of cerebrum images by ram a cerebrum mask over three input images. In the second step, peak ranges are determined from the histogram of the cerebrum image. In the final step, cerebrum images are segmented using coarse to fine clustering technique. We compare the segmentation result and processing time according to peak ranges. Also compare with the other segmentation methods. The proposed algorithm achieved better segmentation results than the other methods.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.2
/
pp.431-436
/
2014
Cell segmentation which extracts cell objects from background is one of basic works in bio-imaging which analyze cell images acquired from live cells in cell culture. In the case of clear images, they have a bi-modal histogram distribution and segmentation of them can easily be performed by global threshold algorithm such as Otsu algorithm. But In the case of degraded images, it is difficult to get exact segmentation results. In this paper, we developed a cell segmentation system that it classify input images by the type of their histogram distribution and then apply a proper segmentation algorithm. If it has a bi-modal distribution, a global threshold algorithm is applied for segmentation. Otherwise it has a uni-modal distribution, our algorithm is performed. By experimentation, our system gave exact segmentation results for uni-modal cell images as well as bi-modal cell images.
Proceedings of the Korean Society of Disaster Information Conference
/
2015.11a
/
pp.96-99
/
2015
본 논문에서는 중복되지 않는 서로 다른 카메라의 영상을 활용한 동일 객체 판단 및 추적 기술에 대하여 소개한다. 영상분석에서 색상 정보는 가장 기본이 되는 중요한 정보라 할 수 있다. 특히 색상 정보를 이용하는 히스토그램은 일반적으로 추적, 인식 등에 많이 사용되고 있으나 이동 객체나 조도 변화 등에 따라 성능에 차이를 보인다. 이러한 문제점을 해결하고자 본 연구에서는 동일 객체 판단을 위해 대표적으로 사용되는 히스토그램 정합의 두 알고리즘(HSV 공간에서의 Histogram matching 방법과 RGB 공간에서의MCSHR 알고리즘) 결합을 통해 분할 히스토그램은 객체를 3조각으로 나누어 전체와 각각의 히스토그램을 구하며 MCSHR을 RGB공간이 아니 Hue 공간 히스토그램으로 변경하여 유사도를 도출 하였으며 조도 변화에 강인한 모델을 만들기 위해 Controlled equalization기법을 사용하여 원 영상의 히스토그램의 확률과 평활화한 히스토그램의 확률 융합을 시도 하였다. 해당 실험의 비교 결과 기존 HSV공간에서 Histogram matching을 통한 유사도 비교보다 12.9% 향상된 정합율의 결과를 보였다. 또한 영상 정보와 스마트 기기를 통한 인식 방법의 융합을 통해 영상 내에서 동일 객체 판단에 대한 추가 정보 제공에 대해 방법론 적인 부분을 제안 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.