• Title/Summary/Keyword: 히든마코프알고리즘

Search Result 2, Processing Time 0.014 seconds

A Study On The Embedded Fault Diagnosis System Implementation (임베디드기반 자동고장진단 시스템 구축에 대한 연구)

  • Kim, Han-Gyu;Jang, Ju-Su
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.287-291
    • /
    • 2013
  • Fault Diagnosis is a process of detecting and isolating faults in a system. On demanding for safety and high reliability systems make it important for some reasons such as economical and environmental incentives. Especially embedded technology and IT technology combined with precise sensing techniques has been doing well developed and applied to fault diagnosis and prognosis in industrial systems like as automotive, ship, heavy industry and aerospace as well. This paper, as an empirical application of diesel engine, presents a method how to get raw data from physical systems, what to consider for successful implementation and which theoretic mathematical models should be applied. In a sense of system level Adaptive Filtering (we call Modified Kalman Filter) and a unit of part level Hidden Markov Process was developed and applied.

A Method for the Classification of Water Pollutants using Machine Learning Model with Swimming Activities Videos of Caenorhabditis elegans (예쁜꼬마선충의 수영 행동 영상과 기계학습 모델을 이용한 수질 오염 물질 구분 방법)

  • Kang, Seung-Ho;Jeong, In-Seon;Lim, Hyeong-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.903-909
    • /
    • 2021
  • Caenorhabditis elegans whose DNA sequence was completely identified is a representative species used in various research fields such as gene functional analysis and animal behavioral research. In the mean time, many researches on the bio-monitoring system to determine whether water is contaminated or not by using the swimming activities of nematodes. In this paper, we show the possibility of using the swimming activities of C. elegans in the development of a machine learning based bio-monitoring system which identifies chemicals that cause water pollution. To characterize swimming activities of nematode, BLS entropy is computed for the nematode in a frame. And, BLS entropy profile, an assembly of entropies, are classified into several patterns using clustering algorithms. Finally these patterns are used to construct data sets. We recorded images of swimming behavior of nematodes in the arenas in which formaldehyde, benzene and toluene were added at a concentration of 0.1 ppm, respectively, and evaluate the performance of the developed HMM.