• Title/Summary/Keyword: 히든마코프

Search Result 5, Processing Time 0.017 seconds

A Method for the Classification of Water Pollutants using Machine Learning Model with Swimming Activities Videos of Caenorhabditis elegans (예쁜꼬마선충의 수영 행동 영상과 기계학습 모델을 이용한 수질 오염 물질 구분 방법)

  • Kang, Seung-Ho;Jeong, In-Seon;Lim, Hyeong-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.903-909
    • /
    • 2021
  • Caenorhabditis elegans whose DNA sequence was completely identified is a representative species used in various research fields such as gene functional analysis and animal behavioral research. In the mean time, many researches on the bio-monitoring system to determine whether water is contaminated or not by using the swimming activities of nematodes. In this paper, we show the possibility of using the swimming activities of C. elegans in the development of a machine learning based bio-monitoring system which identifies chemicals that cause water pollution. To characterize swimming activities of nematode, BLS entropy is computed for the nematode in a frame. And, BLS entropy profile, an assembly of entropies, are classified into several patterns using clustering algorithms. Finally these patterns are used to construct data sets. We recorded images of swimming behavior of nematodes in the arenas in which formaldehyde, benzene and toluene were added at a concentration of 0.1 ppm, respectively, and evaluate the performance of the developed HMM.

Comparison of Adult and Child's Speech Recognition of Korean (한국어에서의 성인과 유아의 음성 인식 비교)

  • Yoo, Jae-Kwon;Lee, Kyoung-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.138-147
    • /
    • 2011
  • While most Korean speech databases are developed for adults' speech, not for children's speech, there are various children's speech databases based on other languages. Because there are wide differences between children's and adults' speech in acoustic and linguistic characteristics, the children's speech database needs to be developed. In this paper, to find the differences between them in Korean, we built speech recognizers using HMM and tested them according to gender, age, and the presence of VTLN(Vocal Tract Length Normalization). This paper shows the speech recognizer made by children's speech has a much higher recognition rate than that made by adults' speech and using VTLN helps to improve the recognition rate in Korean.

Improvement of Gesture Recognition using 2-stage HMM (2단계 히든마코프 모델을 이용한 제스쳐의 성능향상 연구)

  • Jung, Hwon-Jae;Park, Hyeonjun;Kim, Donghan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1034-1037
    • /
    • 2015
  • In recent years in the field of robotics, various methods have been developed to create an intimate relationship between people and robots. These methods include speech, vision, and biometrics recognition as well as gesture-based interaction. These recognition technologies are used in various wearable devices, smartphones and other electric devices for convenience. Among these technologies, gesture recognition is the most commonly used and appropriate technology for wearable devices. Gesture recognition can be classified as contact or noncontact gesture recognition. This paper proposes contact gesture recognition with IMU and EMG sensors by using the hidden Markov model (HMM) twice. Several simple behaviors make main gestures through the one-stage HMM. It is equal to the Hidden Markov model process, which is well known for pattern recognition. Additionally, the sequence of the main gestures, which comes from the one-stage HMM, creates some higher-order gestures through the two-stage HMM. In this way, more natural and intelligent gestures can be implemented through simple gestures. This advanced process can play a larger role in gesture recognition-based UX for many wearable and smart devices.

A Study On The Embedded Fault Diagnosis System Implementation (임베디드기반 자동고장진단 시스템 구축에 대한 연구)

  • Kim, Han-Gyu;Jang, Ju-Su
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.287-291
    • /
    • 2013
  • Fault Diagnosis is a process of detecting and isolating faults in a system. On demanding for safety and high reliability systems make it important for some reasons such as economical and environmental incentives. Especially embedded technology and IT technology combined with precise sensing techniques has been doing well developed and applied to fault diagnosis and prognosis in industrial systems like as automotive, ship, heavy industry and aerospace as well. This paper, as an empirical application of diesel engine, presents a method how to get raw data from physical systems, what to consider for successful implementation and which theoretic mathematical models should be applied. In a sense of system level Adaptive Filtering (we call Modified Kalman Filter) and a unit of part level Hidden Markov Process was developed and applied.

Analyzing Human's Motion Pattern Using Sensor Fusion in Complex Spatial Environments (복잡행동환경에서의 센서융합기반 행동패턴 분석)

  • Tark, Han-Ho;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.597-602
    • /
    • 2014
  • We propose hybrid-sensing system for human tracking. This system uses laser scanners and image sensors and is applicable to wide and crowded area such as hallway of university. Concretely, human tracking using laser scanners is at base and image sensors are used for human identification when laser scanners lose persons by occlusion, entering room or going up stairs. We developed the method of human identification for this system. Our method is following: 1. Best-shot images (human images which show human feature clearly) are obtained by the help of human position and direction data obtained by laser scanners. 2. Human identification is conducted by calculating the correlation between the color histograms of best-shot images. It becomes possible to conduct human identification even in crowded scenes by estimating best-shot images. In the experiment in the station, some effectiveness of this method became clear.