• Title/Summary/Keyword: 희소 배열

Search Result 11, Processing Time 0.025 seconds

Optimal design of a sparse planar array sensor for underwater vehicles (수중 운동체용 희소 평면배열 센서의 최적 설계)

  • Afzal, Muhammad Shakeel;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.53-59
    • /
    • 2018
  • In this study, a new design method is developed to optimize the structure of an underwater sparse array sensor. The purpose of this research is to design the structure of a sparse array that has the performance equivalent to a fully sampled array. The directional factor of a sparse planar array is derived as a function of the structural parameters of the array. With the derived equation, the structure of the sparse array sensor is designed to have the performance equivalent to that of the fully array sensor through structural optimization of the number and location of transmitting and receiving elements in the array. The designed sparse array sensor shows beam patterns very close to those of the fully array sensor in terms of PSLL (Peak Side Lobe Level) and MLBW (Main Lobe Beam Width), which confirms the effectiveness of the present optimal design method. Further, the validity of the analytic beam patterns is verified by comparing them with those from the FEA (Finite Element Analysis) of the optimized sparse array structure.

Functional beamforming for high-resolution ultrasound imaging in the air with random sparse array transducer (고해상도 공기중 초음파 영상을 위한 기능성 빔형성법 적용)

  • Choon-Su Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.361-367
    • /
    • 2024
  • Ultrasound in the air is widely used in industry as a measurement technique to prevent abnormalities in the machinery. Recently, the use of airborne ultrasound imaging techniques, which can find the location of abnormalities using an array transducers, is increasing. A beamforming method that uses the phase difference for each sensor is used to visualize the location of the ultrasonic sound source. We exploit a random sparse ultrasonic array and obtain beamforming power distribution on the source in a certain distance away from the array. Conventional beamforming methods inevitably have limited spatial resolution depending on the number of sensors used and the aperture size. A high-resolution ultrasound imaging technique was implemented by applying functional beamforming as a method to overcome the geometric constraints of the array. The functional beamforming method can be expressed as a generalized beam forming method mathematically, and has the advantage of being able to obtain high-resolution imaging by reducing main-lobe width and side lobes. As a result of observation through computer simulation, it was verified that the resolution of the ultrasonic source in the air was successfully increased by functional beamforming using the ultrasonic sparse array.

An Effective Method for Dense and Sparse Frequent Itemsets Mining (효율적인 밀집 및 희소 빈발 항목 집합 탐색 방법)

  • Yi, Gyeong Min;Jung, Sukho;Shin, DongMun;Musa, Ibrahim Musa Ishag;Lee, Dong Gyu;Sohn, Gyoyong;Ryu, Keun Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.375-376
    • /
    • 2009
  • 트리기반 빈발 항목 집합 알고리즘들은 전체적으로 밀집 빈발 항목 집합에는 효율적이고 빠르게 빈발 항목 집합을 탐색하나 희소 빈발 항목 집합에는 효율적이지 않고 빈발 항목 집합을 빠르게 탐색하지 못한다. 반면에 배열기반 빈발 항목 집합 알고리즘은 희소 빈발 항목 집합에 효율적이고 빠르게 빈발 항목 집합을 탐색하나 밀집 빈발 항목 집합에는 효율적이지 않고 빈발 항목 집합을 빠르게 탐색하지 못한다. 밀집 및 희소 빈발 항목 집합 모두 효율적으로 빈발 항목 집합을 탐색 하고자 하는 시도가 있었으나 두 가지 종류의 알고리즘을 동시에 사용하므로 각각의 알고리즘을 사용할 정확한 기준 제시가 어렵고, 두 가지 알고리즘의 단점을 내포한다. 따라서 본 논문에서는 단일 알고리즘을 사용하여 밀집 빈발 항목 집합 및 희소 빈발 항목 집합 모두에 대해 작은 메모리 공간을 사용하면서도 효율적이고 빠르게 빈발 항목 집합을 탐색할 수 있는 CPFP-Tree라는 새로운 자료구조와 탐색 방법을 제안한다.

Skew-Aware Partitioning of Multi-Dimensional Array Data (다차원 배열 데이터에 대한 편향 인지 분할 기법)

  • Kim, MyeongJin;Oh, SoHyeon;Shin, YoonJae;Choe, YeonJeong;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1223-1225
    • /
    • 2015
  • 본 논문에서는 여러 과학분야에서 사용되는 대용량 배열 데이터를 병렬처리를 위해 효율적으로 분할하는 기법을 제안한다. 실제 배열 데이터는 희소(sparse) 배열로 구성된 경우가 많아 기존의 chunking 기법을 사용하면 일부 chunk에게만 데이터가 밀집되는 편향 현상이 발생하게 된다. 이러한 문제를 극복하기 위해 본 논문에서는 k-d tree와 유사한 방법으로 공간을 분할하고, 분할된 공간을 chunk로 두는 방법을 제안한다. 제안 방법에 의해 각 chunk는 데이터의 밀집 정도가 비슷하게 되어 효과적인 부하분산(load balancing)이 이루어질 수 있다.

Direction finding based on Radon transform in frequency-wavenumber domain with a sparse array (주파수-파수 스펙트럼과 라돈변환을 이용한 희소 배열 기반 방위추정 기법 연구)

  • Choi, Yong Hwa;Kim, Dong Hyeon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.168-176
    • /
    • 2019
  • When an array receives a signal with a frequency higher than the design frequency, there is an ambiguity in beamforming due to spatial aliasing. In order to overcome this problem, Abadi proposed frequency-difference beamforming. However, there is a constraint that the minimum frequency bandwidth is required according to the value of the difference frequency. In this paper, we propose a method to find the direction of the target signal with spatial aliasing based on the frequency-wavenumber spectrum combined with Radon transform. The proposed method can estimate the direction of the target without ambiguities when the signal has nonnegligible bandwidth. We tested the algorithm by simulating a broadband signal and verified the results with the frequency-difference beamforming method using SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015)'s shrimp noise data.

Mining Frequent Pattern from Large Spatial Data (대용량 공간 데이터로 부터 빈발 패턴 마이닝)

  • Lee, Dong-Gyu;Yi, Gyeong-Min;Jung, Suk-Ho;Lee, Seong-Ho;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Many researches of frequent pattern mining technique for detecting unknown patterns on spatial data have studied actively. Existing data structures have classified into tree-structure and array-structure, and those structures show the weakness of performance on dense or sparse data. Since spatial data have obtained the characteristics of dense and sparse patterns, it is important for us to mine quickly dense and sparse patterns using only single algorithm. In this paper, we propose novel data structure as compressed patricia frequent pattern tree and frequent pattern mining algorithm based on proposed data structure which can detect frequent patterns quickly in terms of both dense and sparse frequent patterns mining. In our experimental result, proposed algorithm proves about 10 times faster than existing FP-Growth algorithm on both dense and sparse data.

A Comparative Study on the Efficient Reordering Methods of Sparse Matrix Problem for Large-scale Surveying Network Adjustment (대규모 측지망 조정을 위한 희소 행렬의 효율적인 재배열 방법에 대한 비교 연구)

  • Woo, Sun-Kyu;Yun, Kong-Hyun;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.85-91
    • /
    • 2008
  • When a large sparse matrix is calculated for a horizontal geodetic network adjustment, it needs to go through the process of matrix reordering for the efficiency of time and space. In this study, several reordering methods for sparse matrix were tested, using Sparse Matrix Manipulation System(SMMS) program, total processing time and Fill-in number produced in factorization process were measured and compared. As a result, Minimum Degree(MD) and Mutiple Minimum Degree(MMD), which are based on Minimum Degree are better than Gibbs-Poole-Stockmeyer(GPS) and Reverse Cuthill-Mckee(RCM), which are based on Minimum Bandwidth. However, the method of the best efficiency can be changed dependent on distribution of non-zero elements in a matrix. This finding could be applied to heighten the efficiency of time and storage space for national datum readjustment and other large geodetic network adjustment.

Study on Beamforming of Conformal Array Antenna Using Support Vector Regression (Support Vector Regression을 이용한 컨포멀 배열 안테나의 빔 형성 연구)

  • Lee, Kang-In;Jung, Sang-Hoon;Ryu, Hong-Kyun;Yoon, Young-Joong;Nam, Sang-Wook;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.868-877
    • /
    • 2018
  • In this paper, we propose a new beamforming algorithm for a conformal array antenna based on support vector regression(SVR). While the conventional least squares method(LSM) considers all sample errors, SVR considers errors beyond the given error bound to obtain the optimum weight vector, which has a sparse solution and the advantage of the minimization of the overfitting problem. To verify the performance of the proposed algorithm, we apply SVR to the experimentally measured active element patterns of the conformal array antenna and obtain the weights for beamforming. In addition, we compare the beamforming results of SVR and LSM.

DOA Estimation of Multiple Signal and Adaptive Beam-forming for Mobile Communication Environments (이동통신 환경에서 다중신호의 DOA 추정과 적응 빔성형)

  • Yang, Doo-Yeong;Lee, Min-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.12
    • /
    • pp.34-42
    • /
    • 2010
  • The DOA(direction of arrival), which is based on parametric and nonparametric estimation algorithm, and adaptive beamforming algorithm for mobile communication environments are researched and analyzed. In parametric estimation algorithm, eigenvalues of the signal component and the noise component are obtained from correlation matrix of received signal by array antenna and power spectrum of the received signal is discriminated from them. Otherwise, in nonparametric estimation algorithm, we minimize a regularized objective function for finding a estimate of the signal energy as a function of angle, using nonquadratic norm which leads to supper resolution and noise suppression. And then, DOA is estimated by the signal and noise spatial steering vector, and adaptive beam-forming pattern is improved by weight vectors obtained from the spatial vector. Therefore, the improved directional estimation algorithm with regularizing sparsity constraints offers super-resolution and noise suppression compared to other algorithms.

Compressive Sensing-Based L1-SVD DOA Estimation (압축센싱기법 기반 L1-SVD 도래각 추정)

  • Cho, Yunseong;Paik, Ji-Woong;Lee, Joon-Ho;Ko, Yo Han;Cho, Sung-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.388-394
    • /
    • 2016
  • There have been many studies on the direction-of-arrival(DOA) estimation algorithm using antenna arrays. Beamforming, Capon's method, maximum likelihood, MUSIC algorithms are the main algorithms for the DOA estimation. Recently, compressive sensing-based DOA estimation algorithm exploiting the sparsity of the incident signals has attracted much attention in the signal processing community. In this paper, the performance of the L1-SVD algorithm, which is based on fitting of the data matrix, is compared with that of the MUSIC algorithm.