• Title/Summary/Keyword: 희박혼합기

Search Result 107, Processing Time 0.023 seconds

Introduction of Numerical Simulation Techniques for High-Frequency Combustion Instabilities (고주파 연소불안정 예측을 위한 해석기술 개발 사례)

  • Kim, Seong-Ku;Joh, Miok;Han, Sanghoon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.68-77
    • /
    • 2017
  • High-frequency combustion instability results from a feedback coupling between the unsteady heat release rate and the acoustic waves formed resonantly in the combustion chamber. It can be modeled as thermoacoustic problems with various degrees of the assumptions and simplifications. This paper presents numerical analysis of self-excited combustion instabilities in a variable-length lean-premixed combustor and designs of passive control devices such as baffle and acoustic resonators in a framework of 3-D FEM Helmholtz solver. Nonlinear behaviors such as steep-fronted shock waves and a finite amplitude limit cycle are also investigated with a compressible flow simulation technique.

  • PDF

Improvement in Reduction Performance of LNT-Catalyst System with Micro-Reformer in Diesel Engine (연료 개질장치의 적용에 따른 디젤 LNT 환원성능 개선 특성)

  • Park, Cheol-Woong;Kim, Chang-Gi;Kim, Kwan-Tae;Lee, Dae-Hoon;Song, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.689-696
    • /
    • 2010
  • The Because of its high thermal efficiency, the direct injection (DI) diesel engine has emerged as a promising potential candidate in the field of transportation. However, the amount of nitrogen oxides ($NO_x$) increases in the local high-temperature regions and that of particulate matter (PM) increases in the diffusion flame region during diesel combustion. In the de-$NO_x$ system the Lean $NO_x$ Trap (LNT) catalyst is used, which absorbs $NO_x$ under lean exhaust gas conditions and releases it in rich conditions. This technology can provide a high $NO_x$-conversion efficiency, but the right amount of reducing agent should be supplied to the catalytic converter at the right time. In this research, the emission characteristics of a diesel engine equipped with a micro-reformer that acts as a reductants-supplying equipment were investigated using an LNT system, and the effects of the exhaust-gas temperature were also studied.

Numerical Study on the Flow and Combustion Characteristics in Swirl-Premix Burners (스월 예혼합 버너의 유동 및 연소특성에 관한 수치적 연구)

  • Lim, Jun-Seok;Lee, Jong-Hyeok;Baek, Gwang-Min;Cho, Ju-Hyeong;Kim, Han-Seok;Sohn, Chae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.103-110
    • /
    • 2012
  • The flow field, fuel-air mixing, and behaviors of turbulent flames have been investigated using the large eddy simulation (LES) numerical technique in a premixed swirl combustor equipped with EV double cone burners. Recirculation zones are generated by the swirl burner, and lean premixed flames are formed within a distance of 0.2 m from the tip of the burner. NOx emission of 0.46 ppm is predicted at 1 atm and an air/fuel ratio of 38.7. However, most of the CO generated in a flame front continues to be oxidized as it moves toward the exit, and CO emission of 5.45 ppm is predicted at the exit. The NOx emission can be reduced by decreasing the pressure and air/fuel ratio. The characteristics of NOx emission have been investigated through RANS simulations for various fuel injection types, and it is found thereby that five-lance-hole injection produces the lowest NOx emission rate.

Development of Hybrid/Dual Swirl Jet Combustor for a MGT (Part II: Numerical Study on Isothermal Flow) (마이크로 가스터빈용 하이브리드/이중 선회제트 연소기 개발 (Part II: 비반응 유동에 관한 수치해석))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Lee, Kee-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.70-79
    • /
    • 2013
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine (MGT) were numerically investigated. Location of pilot burner, swirl angle and direction were varied as main parameters with the identical thermal load. As a result, the variations in location of pilot nozzle, swirl angle and direction resulted in the significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus the flame stability and emission performance might be significantly changed. With the comparison of experimental results, the case of swirl angle $45^{\circ}$ and co-swirl flow including optimum location of pilot burner were chosen in terms of the flame stability and emissions for the development of hybrid/dual swirl jet combustor.

Study on the Combustion Characteristics of Light-Load RI-CNG Engine (저부하 라디칼 착화 압축천연가스 엔진의 성능연구)

  • Liu, Yu;Dong, Yong;Keom, J.K.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • 본 연구는 라디칼 착화(Radical Ignition이하 RI) 기술을 적용한 부실직분식 CNG(Compressed Natural Gas) 엔진의 구동특성에 관한 것이다. 실험엔진은 단기통 디젤엔진을 개조하여 사용하였으며, 이는 부실식 디젤엔진처럼 연소실이 주실과 부실로 나누어져 있다. 부실에 분사된 CNG는 스파크플러그로 점화하며, 부실로 부터의 연소가스가 주실 희박 혼합기를 시켜 구동하는 엔진이다. RI 기술은 연소속도를 향상시킬 수 있다. 본 연구는 주로 저부하 RI-CNG 엔진의 성능을 연구하였다. 연료분사기간은 9 ms, 공기과잉률은 1.0, 1.2, 1.4로 하였다. 연료분사시기는 엔진의 배가밸브가 닫히는 ATDC $20^{\circ}CA$ 부터 $120^{\circ}CA$ 사이로, $20^{\circ}CA$ 간격으로 지각시켜 가며 실험하였다. 본 연구는 연료분사시기 및 공기과잉률이 연소최고압력 ($P_{max}$), 연소최고압력시기(${\Theta}_{pmax}$), 도시평균유효압력(IMEP), 사이클 변동계수($COV_{imep}$), 연소속도에 미치는 양향 등을 구하고 분석하였다.

Laminar Burning Velocities of Propane and Iso-Octane Fuels for Stratified Charged Combustion Modeling (성층화 혼합기 연소 모델링을 위한 프로판 및 이소옥탄 연료의 층류 화염 속도)

  • Pae, Sang-Soo;Kim, Yong-Tae;Lim, Jae-Man;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.704-709
    • /
    • 2000
  • Laminar burning velocities of propane- and iso-octane-air mixtures have been numerically modelled over a wide range of equivalence ratio, pressure and temperature. These correlations are applicable to the modelling of stratified charged combustion like that of lean bum and GDI engine combustion. The numerical models are based on the results calculated by PREMIX code with Sloane's detailed chemical reaction mechanism for propane and FlameMaster code with Peters' for iso-octane. Laminar burning velocity for two fuels showed a pressure and temperature dependence in the following form, in the range of $0.1{\sim}4MPa$, and $300{\sim}1000K$, respectively. $S_L={\alpha}\;{\exp}[-\xi({\phi}-{\phi}_m)^2-{\exp}\{-{\xi}({\phi}-{\phi}_m)\}-{\xi}({\phi}-{\phi}_m)]$ where ${\phi}_m=1.07$, and both of ${\alpha}$ and ${\xi}$ are functions of pressure and temperature. Compared with the results of the existing models, those of the present one showed the good agreement of the recent experiment data, especially in the range of lean and rich sides. Judging from the calculated results of the stratified charged combustion by using STAR-CD, the above modelling prove to be more suitable than the other ones.

  • PDF

A Case Study on Combustion Instability of a Model Lean Premixed Gas Turbine Combustor with Open Source Code OSCILOS (온라인 개방코드 OSCILOS를 이용한 모델 희박 예혼합 가스터빈 연소기의 연소불안정 해석 사례)

  • Cha, Dong Jin;Song, Jin Kwan;Lee, Jong Geun
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.4
    • /
    • pp.10-18
    • /
    • 2015
  • Combustion instability is a major issue in design and maintenance of gas turbine combustors for efficient operation with low emissions. With the thermoacoustic view point the instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to study the combustion dynamics of gas turbine combustors, Morgans et al (2014) have developed OSCILOS (open source combustion instability low order simulator) code and it is currently available online. In this study the code has been utilized to predict the combustion instability of a reported case for lean premixed gas turbine combustion, and then its prediction results have been compared with the corresponding experimental data. It turned out that both the predicted and the experimental combustion instability results agree well. Further the effects of some typical inlet acoustic boundary conditions on the prediction have been investigated briefly. It is believed that the validity and effectiveness of the open source code is reconfirmed through this benchmark test.

Introduction to Thermoacoustic Models for Combustion Instability Prediction Using Flame Transfer Function (화염 전달 함수를 이용한 열음향 연소 불안정 해석 모델 소개)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.98-106
    • /
    • 2011
  • This paper reviews the state-of-the-art thermoacoustic(TA) modeling techniques and research trend to predict major parameters determining combustion instabilities in lean premixed gas turbine combustors. Linear TA modeling results give us an information on eigenfrequencies and initial growth rate of the instabilities. For the prediction, linear relation equation between acoustic waves and heat release oscillations should be derived in the determined system. Key information for this analysis is to determine the heat release fluctuations in the combustor, which is typically obtained by using n-${\tau}$ function from flame transfer function measurements and/or predictions. Great advancement in the linear TA modeling has been made over a couple of decades, and some successful prediction results have been reported in actual gas turbine combustors. However nonlinear TA model developments which are required to analyze nonlinear system behaviors such as limit cycle saturation and transition phenomena are still limited in a very simple system. In order to fully understand combustion instabilities in a complicated real system, nonlinear flame dynamics and acoustic wave interaction with nonlinear system boundary conditions should be explained from the nonlinear TA model developments.

An Experimental Study on Flame Structure and Combustion Instability Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서 화염구조와 연소불안정 특성에 대한 실험적 연구)

  • Park, Sung-Soon;Kim, Min-Ki;Yoon, Ji-Su;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.26-34
    • /
    • 2011
  • The present work addresses structural characteristics of natural gas flames in a lean premixed swirl-stabilized combustor with an attention focused on the effect of the formation of recirculation zones on the combustion instability. It is known that the recirculation zone plays an important role in stabilizing a turbulent, premixed natural gas flames by providing a source of heat or radicals to the incoming premixed fuel and air. To improve our understanding of the role of recirculation zones, the flame structure was investigated for various mixture velocities, equivalence ratios and swirl numbers. The optically accessible combustor allowed for the application of laser diagnostics, and Particle Image Velocimetry(PIV) measurements was used to characterize the flame structure under both cold flow conditions and hot flow conditions. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The results indicates that the formation of recirculation zone is strongly related to the occurrence of thermo-acoustic instabilities.

An Experimental Study on Flame Structure and Combustion Instability Characteristics in Model Gas Turbine Combustor (모형 가스터빈 연소기에서 화염구조와 연소불안정 특성에 대한 실험적 연구)

  • Park, Sung-Soon;Kim, Min-Ki;Yoon, Ji-Su;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.445-452
    • /
    • 2011
  • The present work addresses structural characteristics of natural gas flames in a lean premixed swirl-stabilized combustor with an attention focused on the effect of the formation of recirculation zones on the combustion instability. It is known that the recirculation zone plays an important role in stabilizing a turbulent, premixed natural gas flames by providing a source of heat or radicals to the incoming premixed fuel and air. To improve our understanding of the role of recirculation zones, the flame structure was investigated for various mixture velocities, equivalence ratios and swirl numbers. The optically accessible combustor allowed for the application of laser diagnostics, and Particle Image Velocimetry(PIV) measurements was used to characterize the flame structure under both cold flow conditions and hot flow conditions. Dynamic pressures were also measured to investigate characteristics of combustion at the same time. The results indicates that the formation of recirculation zone is strongly related to the occurrence of thermo-acoustic instabilities.

  • PDF