• Title/Summary/Keyword: 희박연소 혼합기

Search Result 102, Processing Time 0.028 seconds

Prediction of Pollutant Emissions from Lean Premixed Gas Turbine Combustor Using Chemical Reactor Network (화학반응기 네트워크을 이용한 희박 예혼합 가스터빈 연소기에서의 오염물질 예측에 관한 연구)

  • Park, Jung-Kyu;Nguyen, Truc Huu;Lee, Min-Chul;Chung, Jae-Wha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.225-232
    • /
    • 2012
  • A chemical reactor network (CRN) was developed for a lean premixed gas turbine combustor to predict the emission of pollutants such as NOx and CO. In this study, the predictions of NOx and CO emissions from lean premixed methane-air combustion in the gas turbine were carried out using CHEMKIN and a GRI 3.0 methane-air combustion mechanism, which includes the four NO formation mechanisms for various load conditions. The calculated results were compared with experimental data obtained from a modified test combustor to validate the model. The contributions of the four NO pathways were investigated for various load conditions. The effects of nonuniformity of the mass flux and of the equivalence ratio of the injector on the NOx formation were investigated, and a method of reducing the pollutant formation was suggested for the development of a sub-10 ppm gas turbine combustor.

A study of a new combustion chamber with a mixture accumulator (혼합기어큐뮬레이터를 갖춘 신연소실에 관한 연구)

  • 조진호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.24-31
    • /
    • 1983
  • 혼합기 어큐물레이터를 부착시킨 연소실에 관한 새로운 아이디어를 고찰하였다. "혼합기어큐물 레이터실 (Mixture Accumulator Chamber; MA Chamber)"로 명명한 이 연소실은 점화전 압축 행정중에 부하상태와 관계없이 내부의 가한 기체난류를 일으킬 수 있다. 이러한 기관(MA engine)의 성능과 그 특성을 연구하였다. 그 기관의 베이스기관(base engine)에 비하여 기관압 축비를 증가시킬 수 있고 희박혼합기로서 안정연소를 시킬 수 있음이 확실하다. 있음이 확실하다.

  • PDF

壓縮點火機關의 燃燒室 特性과 狀態變化(I)

  • 김광수
    • Journal of the KSME
    • /
    • v.23 no.6
    • /
    • pp.427-433
    • /
    • 1983
  • 내연기관의 성능은 실린더에서 연료의 화학에너지가 열에너지로 얼마만큼 빠르고 완전하게 변화하느냐에 좌우된다. 이를 위해서는 실린더 내에서 뜨거운 압축공기와 연료의 혼합 및 증기화가 요구된다. 엔진의 출력은 매 사이클당 흡입.압축할 수 있는 공기량에 좌우되므로 연소의 해석을 위해서는 실린더 내의 공기유동, 연료의 분무 및 연소과정을 이해 해야한다. 배기와 엔진효율의 요구성때문에 희박 혼합기 또는 EGR (exhaust gas recirculation)이 필요하게 된다. 그러나 희석이 크면 낮은 연소온도, 낮은 층류흐름속도와 화염전면의 낮은 난류강도 때문에 연소기간이 증대하게 된다. 실제로 희박의 증가는 실화 또는 긴 연소 지연기간, 사이클 마다의 연소맥동현상, HC배기의 증가등을 초래하게 된다. 이러한 저온연소의 단점들은 연소상태를 안정시키고 연소량을 증대시키는 공기의 유동을 이용해서 해결 될 수 있다. 최근에는 선회류와 난류의 강도를 증가시켜서 빠른연소(fast burning)를 이루고 있다. 선회류와 난류의 강도를 증대시키는 가장 중요한 2가지 방법은 흡입포트(port), 매니홀드(manifold)설계이다.

  • PDF

A Study on Combustion Characteristics of the Methane-Hydrogen Lean Mixture by Using Multiple Spark Capacity Discharge in a CVCC (I) (반복점화장치 사용시 정적연소실내 메탄-수소 희박혼합기의 연소특성 연구(I))

  • 김봉석
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.124-130
    • /
    • 2003
  • In the present study, the combustion characteristics of methane and hydrogen-supplemented methane as alternative fuels for automotive vehicles were investigated at various hydrogen substitution rate, ignition position and ignition methods in a CVCC. As a result, it is possible to decrease the total burning time and to obtain the reduction of NO concentration by using MSCDI device under the lean mixture conditions without deteriorating combustion characteristics such as combustion efficiency, maximum combustion pressure etc.. And by mixing hydrogen into methane, it was found that the reduction of the total burning time was obtained, in comparison with the use of methane only ; and at the same time, the combustion promotion rate was improved remarkably in comparison with the use of methane only.

Effect of $CO_2$ dilution on Combustion Instabilities in dual premixed flame (이중 예혼합화염에서 $CO_2$ 희석이 연소불안정에 미치는 영향)

  • Lee, Kang-Yeop;Kim, Hyung-Mo;Park, Poo-Min;Hwang, O-Sik;Yang, Soo-Seok;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.763-768
    • /
    • 2011
  • The effects of $CO_2$-dilution on combustion instability were studied in order to apply biogas in a dual lean premixed gas turbine combustor on a real-scale dual lean premixed burner head which is originally developed for Natural Gas fuel. Combustion instability is reduced by $CO_2$ dilution effect according to the result of dynamic pressure signal and phase-resolved $OH^*$ images. The reason for this is that dilution of $CO_2$ reduces heat release perturbation and increases flame volume due to reduction of the flame speed and expansion of flame surface.

  • PDF

A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (2) (정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (2))

  • 박종상;강병무;이명준;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.19-26
    • /
    • 2004
  • A prior fundamental study was executed using a constant volume chamber to improve the burning properties of lean pre-mixture by the injection of active radicals generated in the sub-chamber. In consequence, RI method shows remarkable progress in the aspects of burning velocity and combustible lean limit compared with SI method. In this study, the necessary additional works have been performed to be based on the former results. We changed parameters as the initial temperature and the initial pressure of mixture. And the effects of residual gas at issue in a real engine were investigated. As a result, the effects of initial temperature were significant, but on the other hand, those of initial pressure were slight. The correlation of passage hole number between overall passage hole area was grasped. And the more detailed analysis is required on residual gas.

The Low-NOx Characteristics of Premixed Lean-Burn Gas Turbine Combustor (예혼합 희박연소 가스터빈 연소기의 저 NOx 특성)

  • Pae, H.S.;Ahn, K.Y.;Park, J.I.;Ahn, J.H.;Kim, Y.M.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.201-207
    • /
    • 1999
  • The combustion characteristics for the low NOx 50 kW-class gas turbine combustor have been experimentally investigated. In order to achieve the premixing and the lean burn combustion, the geometries of the primary zone including premixed chamber were modified from conventional combustor. The centerline profiles of CO and NO concentration, and temperature were measured for the premixed combustors with or without dilution holes in the liner. The effects of the pilot fuel injection rate and air dilution on flame stabilization and pollutant (CO, NO) emission are discussed in detail.

  • PDF

Thermoacoustic Analysis Model for Combustion Instability Prediction - Part 1 : Linear Instability Analysis (연소 불안정 예측을 위한 열음향 해석 모델 - Part 1 : 선형 안정성 해석)

  • Kim, Daesik;Kim, Kyu Tae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.32-40
    • /
    • 2012
  • For predicting eigenfrequency and initial growth rate of combustion instabilities in lean premixed gas turbine combustor, linear thermoacoustic analysis model was developed in the current paper. A model combustor was selected for the model validation, which has well-defined inlet and outlet conditions and a relatively simple geometry, compared to the combustor in the previous works. Analytical linear equations for thermoacoustic waves were derived for a given combustion system. It was found that the prediction results showed a good agreement with the measurements, even though there was underestimation for instability frequencies. This underestimation was more obvious for a longer flame (i.e. wider temperature distribution) than for a shorter flame.

Study on combustion instabilities in gas turbine combustors (가스터빈 연소기에서의 연소 불안정 측정에 관한 연구)

  • Kim, Dae-Sik;Lee, Jong-Guen;Santavicca, Domenic
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.430-432
    • /
    • 2011
  • An experimental study of the flame response in a turbulent premixed combustor has been conducted in order to investigate mechanisms for combustion instabilities in lean premixed gas turbine combustor. A lab-scale combustor and mixing section system were fabricated to measure the flame transfer function. Measurements are made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function as a function of the modulation frequency and operating conditions.

  • PDF

Fuel Stratification Process in a Lean Burn Internal Combustion Engine by Using Planar Laser Induced Fluorescence (PLIF를 이용한 희박연소엔진에서의 연료 성층화에 관한 연구)

  • 정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2003
  • Mixture formation in the cylinder of a lean bum engine has been observed by Laser Induced Fluorescence technique. XeCl laser (308nm) was used to produce a laser sheet. 3-pentanone has been added to iso-octane fuel to produce fluorescence, the intensity of which is proportional to the concentration of the fuel. The laser sheet was introduced through the piston window and the fuel distribution in the vertical plane was observed through a side window. Comparison has been made for the cases of selected fuel injection timing as 0, 360, 405, and 450 CA. For the case of 0 and 360 CA injection, uniform fuel distribution in the combustion chamber has been obtained at the ignition time which is favorable for the high load mode. And the late injection cases, 405 and 450 CA, revealed the stratified formation of rich mixture around the spark plug. That extends the lean misfire limit and reduces cyclic variation in the low load mode.