• Title/Summary/Keyword: 흡착 시간

Search Result 1,117, Processing Time 0.027 seconds

Adsorption Characteristics of Nitrogen monoxide over Dealuminated and Alkali/Alkaline-earth Metal ion Exchanged Y-Zeolites (탈알루미늄 및 알칼리/알칼리토금속 양이온을 교환한 Y형 제올라이트의 NO흡착 특성)

  • Kim, Cheol-Hyun;Lee, Chang-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.17-25
    • /
    • 2005
  • The dealuminated and alkali/alkaline-earth metal exchanged Y-zeolites were prepared as a catalyst. Elemental compositions and structures of the prepared catalysts were analyzed by the various spectroscopic techniques such as inductively coupled plasma-atomic emission spectroscopy(ICP-AES), X-ray fluorescence(XRF) and X-ray diffraction(XRD), and the desorption behaviors of adsorbed species on the catalyst surfaces were investigated via NO-TPD experiment. Comparing with the composition of the starting material of NaY zeolite, the magnitudes of Si/Al ratio in catalytic materials were increased after dealumination. The Si/Al ratio of catalytic materials after dealumination followed by Cs and Ba cation exchange were additionally decreased. Dealumination to catalysts induced a destruction of basic frame due to a detachment of aluminum, which results in reducing framework structure, while increasing non-framework structure. This phenomenon becomes more serious with increasing time of steam treatment and even more significant for the cation exchanged catalysts. In NO-TPD experiments, the desorption peaks of NO which indicates an activity point of catalysts shifted to the low temperature region after dealumination and cation exchange. The desorption peaks of the NO-TPD profiles taken after steam treatment also shifted to the low temperature region as the steam treatment time increased. In dealuminated and cation exchanged Y-zeolites, the catalytic activities were more influenced by exchanged cation and the formation of non-framework structure.

  • PDF

Preparation of an Immobilized Enzyme for Enhancing Thermostability of the Crude Proteinase from Fish Intestine (어류 내장 유래 단백질 분해효소로부터 열안정성 개선을 위한 고정화 효소의 제조)

  • 전유진;박표잠;변희국;송병권;김원석;김세권
    • Journal of Life Science
    • /
    • v.8 no.6
    • /
    • pp.627-637
    • /
    • 1998
  • In order to utilize tuna pyloric caeca among fish intestines wasted when treated raw fish in fish processing manufactory, a crude enzyme with high proteolytic activity was extracted and its optimum condition were investigated. An immobilized enzymes also were prepared by adsorption method to enhance thermostability of the crude proteinase. The yield of the crude proteinase was approximately 2.7% on dry basis. The proteolytic activity for casein was 0.54 U/mg protein, for BTEE 1.10 U/mg protein, and for BAEE 2.69 U/mg protein. It was almost similar to that of the commercial trypsin purified. Optimum hydrolysis activity of the crude proteinase was about 80%, as the degree of hydrolysis for casein, at pH 10.0 and 45$^{\circ}C$ for 12 hrs. Also, when the crude proteinase was immobilized on DEAE-Cellulose and chitin, the residual activities remained after 7 days of pre-incubation time were maintained about 90% or more and their thermostabilities were enhanced by about 50%, compared with the native enzyme.

  • PDF

CVD를 이용한 수직으로 정렬된 탄소나노튜브의 합성과 성장한계에 관한 메커니즘

  • Park, Sang-Eun;Song, U-Seok;Kim, Yu-Seok;Song, In-Gyeong;Lee, Su-Il;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.615-615
    • /
    • 2013
  • 탄소나노튜브(carbon nanotubes; CNT)는 강철보다 10~100배 견고할 뿐만 아니라 영률과 탄성률 은 각각 1.8 TPa, 1.3 TPa에 달하는 매우 우수한 기계적 강도를 지니고 있으며, 구리보다 좋은 전기 전도도와 다이아몬드의 2배에 이르는 열전도도를 지닌 물질이다. 이러한 탄소나노튜브의 우수한 특성을 이용하여 나노섬유, 고분자-탄소나노튜브의 고기능 복합체, 나노소자, 전계방출원(field emitter), 가스센서 등 다양한 분야로의 활용을 위한 연구가 진행되고 있다. 특히, 수백 ${\mu}m$ 이상의 길이로 수직 성장된 탄소나노튜브(VA-CNTs)의 합성은 길이 대 직경의 비(aspect ratio)가 비약적으로 증가하여 앞서 언급한 분야로의 활용이 더욱 유리하며, 그 중에서도 대량 생산, 나노섬유 및 나노복합체로서의 활용에 극히 유용하다. 최근에는 열 화학기상증착(thermal chemical vapor deposition; TCVD)법을 이용하여 탄소나노튜브의 구조를 제어하는 연구들이 많이 보고되고 있다. 열 화학기상증착을 이용한 수직 정렬된 탄소나노튜브의 합성에서 합성조건의 변화는 탄소나노튜브의 길이, 벽의 수, 직경, 결정성 등 구조에 큰 영향을 미친다. 탄소나노튜브는 이러한 구조에 따 라 물리적 특성이 달라지기 때문에 다양한 분야로의 응용을 위해서는 합성에 대한 근본적인 이해 가 절실히 요구된다. 본 연구에서는 열 화학기상증착법을 이용한 합성에서 성장압력의 변화에 따른 탄소나노튜브의 구조적 특성을 조사하였다. 성장압력의 변화는 탄소나노튜브의 밀도, 길이, 결정성에 큰 영향을 미치는 것을 주사전자현미경과 라만분광법을 이용하여 확인하였다. 이러한 결과 는 탄소나노튜브 박막(CNT forest)의 가장자리(edge)에 비정질 탄소(amorphous carbon)의 흡착으로 인한 나노튜브사이의 간격(intertube distance)이 좁아짐에 따른 가스공급 차단 효과로 설명이 가능 하다. 또한, 마이크로웨이브 플라즈마 화학기상증착법을 이용하여 탄소나노튜브를 합성하였다. 합성과정 중 산소(O2)를 주입 하였을 경우, 그렇지 않은 경우에 비하여 성장 속도가 증가하여 3시간 합성 시 2 mm가 넘는 수직 정렬된 탄소나노튜브를 합성 할 수 있었다. 이러한 결과는 과잉 공급 되어 탄소나노튜브로 합성되지 못하고 촉매금속의 표면과 탄소나노튜브의 벽에 비정질의 형태로 붙어있는 탄소 원자들을 추가 주입해 준 산소에 의하여 CO 또는 CO2 형태로 제거해 줌으로써 활성화된 촉매금속의 반응 시간을 향상 시켜주어 탄소공급이 원활하게 이루어졌기 때문이라 생각된다.

  • PDF

Behavior of cement-based permeation grouting in cohesionless soil considering clogging phenomena (폐색효과를 고려한 사질토의 시멘트 침투 그라우팅 거동 특성)

  • Seo, Jong-Woo;Lee, In-Mo;Kim, Byung-Kyu;Kwon, Young-Sam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.485-500
    • /
    • 2018
  • The behavior of cement-based permeation grouting is divided into three different groups depending on the grain size distribution of the soils: (1) zone of cement-based permeation grouting not feasible; (2) zone of cement-based permeation grouting feasible; and (3) zone in which an accelerating agent should be added to limit the penetration depth. In the cement-based permeation grouting feasible zone, the concept of a representative pore radius was proposed. The ratios of the representative pore radius to the mean pore radius were obtained by performing laboratory test and comparing with clogging theory; these values were in the range of 1.07 and 1.35 depending on the grain size distribution of the soils. In addition, a functional relationship between the lumped parameter (${\theta}$), the representative pore radius and the w/c ratio were derived by comparing and matching experimental results with predictions from theory. In the zone in which the accelerating agent should be added, the controlling process of gel time to limit the penetration depth was experimentally verified. The test results matched well with those obtained from theory utilizing the developed grout penetration program on condition that the viscosity increasing tendency of grout suspension with time is properly taken into account.

Development of Influent Controlled Membrane Bioreactor for Biological Nutrient Removal on Municipal Wastewater (하수 고도처리를 위한 유로변경형 MBR공정의 개발)

  • Park, Jong-Bu;Shin, Kyung-Sook;Hur, Hyung-Woo;Kang, Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.485-491
    • /
    • 2011
  • This study was performed to investigate the characteristics of nutrient removal of municipal wastewater in membrane bioreactor system. Membrane bioreactor consists of four reactors such as two intermittently anaerobic tanks, the oxic tank and the sludge solubilizaion tank with an internal recycle. The hydraulic retention time (HRT) and flux were 6.5 hours and $20.4L/m^2{\cdot}hr$ (LMH), respectively. The removal efficiency of $COD_{Cr}$, SS, TN and TP were 94.0%, 99.3%, 99.9%, 69.9%, and 66.9%, respectively. The estimated true biomass yield, specific denitrification rate (SDNR), specific nitrification rate (SNR), specific phosphorus release rate (SPRR) and specific phosphorus uptake rate (SPUR) were 0.34 kgVSS/kgBOD d, $0.067mgNO_3-N/mgVSS{\cdot}d$, $0.028mgNH_4-N/mgVSS{\cdot}d$, 16.0 mgP/gVSS d and 2.1 mgP/gVSS d, respectively. The contents of nitrogen and phosphorus of biomass were 8.9% and 3.5% on an average.

Manufacturing Tailored Powder Activated Carbon for Removing Perchlorate in Water (수중 과염소산염(Perchlorate) 제거를 위한 맞춤 분말활성탄 제조)

  • Kim, Sang-Goo;Song, Mi-Jeong;Choi, Keun-Joo;Ryu, Pyung-Jong;Kim, Shin-Chul;Lee, Yong-Doo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.637-641
    • /
    • 2008
  • The aims of this research were to manufacture tailored powder activated carbon having a higher prechlorate removal efficiency and to compare perchlorate removal efficiency with different carbon materials for applying to the drinking water treatment plant. Activated carbon pre-loaded with cetyltrimethylammonium chloride(CTAC) has been researched to be an effective adsorbent for removing perchlorate in the water. 10,000 mg/L tailored powder activated carbon were manufactured by mixing 5.0 g of powder activated carbon(PAC) into 500 mL of 5,000 mg/L CTAC solution. The tailored powder activated carbon had 10 times higher perchlorate removal efficiency than virgin powder activated carbon. The residual perchlorate gradually decreased with the first 15 minute contact time with the tailored powder activated carbon, however, the longer contact time did not affect perchlorate removal. Tailored powder activated carbon by manufactured with 1,083 mg/g iodine value carbon had almost 4 times higher perchlarate removal efficiency than the 944 mg/g iodine value carbon. Dosage of 5 mg/L tailored powder activated carbon, which can adaptable dosage at the treatment plant, could decrease the perchlorate concentration from 50 $\mu$g/L to 15 $\mu$g/L.

Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon (영가철이 고정된 입상활성탄 제조를 위한 최적 합성조건 도출)

  • Hwang, Yuhoon;Mines, Paul D.;Lee, Wontae;Andersen, Henrik R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.521-527
    • /
    • 2016
  • Nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, however, the nano size should be of concern when nZVI is considered for water treatment, due to difficulties in recovery. The loss of nZVI causes not only economical loss, but also potential risk to human health and environment. Thus, the immobilization onto coarse or structured support is essential. In this study, two representative processes for nZVI immobilization on granular activated carbon (GAC) were evaluated, and optimized conditions for synthesizing Fe/GAC composite were suggested. Both total iron content and $Fe_0$ content can be significantly affected by preparation processes, therefore, it was important to avoid oxidation during preparation to achieve higher reduction capacity. Synthesis conditions such as reduction time and existence of intermediate drying step were investigated to improve $Fe_0$ content of Fe/GAC composites. The optimal condition was two hours of $NaBH_4$ reduction without intermediate drying process. The prepared Fe/GAC composite showed synergistic effect of the adsorption capability of the GAC and the degradation capability of the nZVI, which make this composite a very effective material for environmental remediation.

Effect of Inorganic Coagulants on the Performance of Electro-Chemical Treatment Process Treating Hospital Wastewater (병원폐수의 전기화학적 처리시 무기응집제 주입 효과에 관한 연구)

  • Jeong, Seung-Hyun;Jeong, Byung-Gon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.709-716
    • /
    • 2011
  • Effect of inorganic coagulants dosing on the performance of electro-chemical process was studied when treating hospital wastewater having low electrolyte concentration. It is thought that adding inorganic coagulants caused increase in concentration of electrolyte and this caused increase in free chloride concentration and consequently, caused increase in indirect oxidation effect. Thus, COD removal efficiencies more than doubled in percentage terms at the 2 hrs of reaction time and current density of $1.76A/dm^2$ compared with the results obtained from the parallel experiments without adding inorganic coagulants. T-N removal efficiencies approximately doubled in percentage terms at the 2 hrs of reaction time and 700 ppm of coagulants addition and applied current density of $1.76A/dm^2$ due to the increase of free residual chlorine such as HOCl caused by increase of electrolyte concentration through the addition of inorganic coagulants. Under the same experimental condition, more than 90% of T-P removal efficiencies was obtained. The reason can be explained that increase of chemical adsorption rate between phosphate and insoluble metal compounds caused by dissolved oxygen generated from anode by the increased electrolyte concentration through inorganic coagulants addition make a major role in improving T-P removal efficiencies. It can be concluded that inorganic coagulants addition as the supplemental agent of electrolyte is effective way in improving organic and nutrient salt removal efficiency when treating hospital wastewater having low electrolyte concentration.

Purification and Characterization of Mitochondrial Malate Dehydrogenase during Ovarian Development in Aedes aegypti L. (Aedes aegypti L. 난성숙과정중 생성되는 Mitochondrial Malate Dehydrogenase의 정제 및 특성)

  • 김인규;이강석;정규회;박영민;성기창
    • Korean journal of applied entomology
    • /
    • v.34 no.3
    • /
    • pp.181-190
    • /
    • 1995
  • Malate dehydrogenase in the mosquito ovary after a blood meal, Aedes aegypti, was purified and characterized. MDH purification steps involved DEAE-Sepharose, S-Sepharose and Cibacron blue affinity chromatography. The purified MDH was 70,000 daltons in molecular weight and was a homodimer consisting of tow identical subunits. Optimal activity of purified MDH was obtained pH 9.0-9.2 in malate-oxaloacetate reaction and pH 9.8-10.2, in oxaloactate-malate reaction. With obtained pH 9.0-92 in malate-oxaloacetate reaction and pH 9.8-10.2, in oxaloactate-malate reaction. With malate as substrate, purified mitochondrial MDH (1.28$\times$${10}^{-4}$ M) had lower Km value than cytoplasmic MDH (8.92x${10}^{-3}$ M). MDH activity was inhibited by citrate, $\alpha$-ketoglutarate, and ATP. Inhibition of MDH activity by ATP and citrate was less in malate-oxaloacetate reaction and in oxaloacetate-malate reaction. MDH activity was completely inhibited by ATP in oxaloacetate-malate reaction and not inhibited by citrate in malate-oxaloacetate reaction. Temporal activity change of MDH is similar to that of isocitrate dehydrogenase in the ovary after blood feeding; their activities in the ovary began to rise at 18 hours after a blood meal, and reached at the maximal level at 48 hours.

  • PDF

Quality Characteristics of Cheonggukjang Made with the Smoked Soybeans (훈연 처리한 콩으로 제조한 청국장의 품질 특성)

  • Ko, Hyeong-Min;Choi, Seon-Jeong;Choi, Won-Seok;Lee, Nan-Hee;Choi, Ung-Kyu
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.2
    • /
    • pp.274-279
    • /
    • 2014
  • The objective of this study was to investigate the fermentation characteristics of cheonggukjang made with smoked soybeans. The study found that the amino nitrogen content and pH of cheonggukjang made with smoked soybean (CSS) were significantly elevated compared to that of cheonggukjang made with non-smoked soybeans (CNS). On the other hand, the moisture content of CSS was significantly lower when compared to that of CNS. Moreover, there were no significant differences in the viscous substance content between CNS ($5.8{\pm}0.2%$) and CSS ($5.6{\pm}0.3%$). In terms of colour, the L and b values of CSS were higher than that of CNS, whereas the a value of CNS was higher than that of CSS. Hence, it was confirmed that the total isoflavone contents in CSS ($1,624.6{\pm}53.2{\mu}g/g$) were higher than that in CNS ($1,590.6{\pm}59.3{\mu}g/g$). In both CSS and CNS, the content of genistin was highest followed by glacitin and daidzein. Also, the number of aerobic bacteria in CNS ($8.1{\pm}0.4\;log\;cfu/g$) was higher than that in CSS ($7.3{\pm}0.3\;log\;cfu/g$). Taken together, a smoking process can useful for the development of new cheonggukjang products.