• Title/Summary/Keyword: 흡착 시간

Search Result 1,113, Processing Time 0.043 seconds

Correlations Between Pore Structure of Activated Carbon and Adsorption Characteristics of Acetone Vapor (활성탄의 세공구조와 Acetone Vapor 흡착특성의 상관관계)

  • Lee, Song-Woo;Bae, Sang-Kyu;Kwon, Jun-Ho;Na, Young-Soo;An, Chang-Doeuk;Yoon, Young-Sam;Song, Seung-Koo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.620-625
    • /
    • 2005
  • This study is to investigate the correlation between pore structures of activated carbons and adsorption characteristics of acetone vapor using the dynamic adsorption method. The experimental results showed that the breakthrough time of ACT activated carbon made by Takeda was the longest, because ACT has more micropores below pore diametr $10{\AA}$ than the compared activated carbons. The equilibrium adsorption capacity had direct correlation to the breakthrough time. The relation between BET specific surface area and the equilibrium adsorption capacity was hard to say linear. Therefore, it was difficult to estimate the adsorption ability of activated carbons only by BET specific surface area. The correlation factor between the cumulative surface area and the equilibrium adsorption capacity decreased with enlarging the range of pore size, and there was the highest correlation factor in the range of below $10{\AA}$.

Adsorption of Diazinon on Humic Substances in Submerged Soil (담수토양중 부식물질에 대한 diazinon의 흡착)

  • Song, Jae-Young;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 1993
  • In order to find the effect of humic substances affecting to the behavior of diazinon in submerged soil, the adsorption rate of diazinon was investigated with different soil humic substances like as humin, humic acid and fulvic acid. The adsorption rate of diazinon(1.8 ppm) was 12.4% in humin, 11.9% in fulvic acid and 10.4% in humic acid at 1% concentration of humic substances, also were not much differences at 0.1 and 0.5%. But it showed much similar level ($10.2{\sim}10.6%$) at 1.0% concentration in 5ppm diazinon treatment. As a result, because adsorption rate of diazinon on humic substances were about $10{\sim}12%$, disappearance of diazinon in submerged soil may be affected by the other factors such as soil microorganism.

  • PDF

Changes of Adsorption Capacity and Structural Properties during in situ Regeneration of Activated Carbon Bed Using Ozonated Water (오존수 산화를 이용한 활성탄 흡착탑의 현장 재생 시 흡착용량 및 구조특성의 변화)

  • Lee, Jinjoo;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.341-345
    • /
    • 2020
  • An in situ regeneration of activated carbon bed using an ozonated water was studied in order for avoiding the carbon loss, contaminant emission and time consuming for discharge-regeneration-repacking in a conventional thermal regeneration process. Using phenol and polyethylene glycol (PEG) as adsorbates, the adsorption breakthrough and in situ regeneration with the ozonated water were repeated. These organics were supposed to degrade by the oxidation reaction of ozone, regenerating the bed for reuse. As the number of regeneration increased, the adsorption capacity for phenol was reduced, but the change was stabilized showing no further reduction after reaching a certain degree of decrement. The reduction of adsorption capacity was due to the increase of pore size resulting in the decrease of specific surface area during ozonation. The adsorption capacity of phenol decreased after the ozonated regeneration because the in-pore adsorption was prevalent for small molecules like phenol. However, PEG did not show such decrease and the adsorption capacity was constantly maintained after several cycles of the ozonated regeneration probably because the external surface adsorption was the major mechanism for large molecules like PEG. Since the reduction in the pore size and specific surface area for small molecules were proportional to the duration of contact time with the ozonated water, careful considerations of the solute size to be removed and controlling the contact time were necessary to enhance the performance of the ozonated in situ regeneration of activated carbon bed.

Soil Adsorption of Herbicide Quizalofop-Ethyl (제초제 Quizalofop-Ethyl의 토양흡착)

  • Kim, Hee-Kwon;Park, In-Jin;Shim, Jae-Han;Shu, Yong-Tack
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.442-447
    • /
    • 1996
  • Quizalofop-ethyl is a herbicide which is extensively applied to soybean, onion, garlic, strawberry and watermelon to control broad-leaf weeds. The experiment was conducted to find out soil adsorption of this chemical. The soil adsorption of quizalofop-ethyl in both Yeongok and Namwon soil series reached an equilibrium 24 hours after shaking incubation. Correlation coefficients of Freundlich plot of both soils were 0.998 and 0.995, respectively. Adsorption constants(K) were 4.710 and 10.414, respectively. Amounts of soil adsorption of quizalofop-ethyl increased with an increase in soil organic matter and incubation temperature.

  • PDF

Synthesis of 2,2'-Iminodibenzoic Acid-Cellulose Adsorbent and Its Adsorptivity of Cu(II) and Pb(II) (2,2'-Iminodibenzoic acid-cellulose 흡착제의 합성과 Cu(II) 및 Pb(II)의 흡착에 관한 연구)

  • Shim, Sang-Kyun;Min, Byoung-Do
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.291-299
    • /
    • 1997
  • 2,2'-iminodibenzoic acid-cellulose was prepared by reacting 2,2'-iminodibenzoic acid salt with cellulose-Cl obtained by chlorination of cellulose-OH which is the major component of sawdust. The adsorptivity of Pb(II) and Cu(II) was studied using the synthetic chelating adsorbent. The adsorption amounts of those ions increased with increasing pH and the optimum adsorption time of metal ion was about 1hr. The adsorptivity of Pb(II) was larger than that of Cu(II).

  • PDF

Adsorption Characteristics of Altered Feldspar Porphyry for Heavy Metals (변질 장석반암의 중금속 흡착특성)

  • Park, Sang-Bum;Hwang, Jeong
    • Journal of the Korean earth science society
    • /
    • v.29 no.3
    • /
    • pp.246-254
    • /
    • 2008
  • This study has been performed to evaluate the possibility of utilizing feldspar porphyry as an adsorbent for heavy metals in natural water. The research sample rock 'Maekbansuk' was altered feldspar porphyry which included chlorite, epidote and calcite formed by a prophylitic alteration process. In extraction tests, the majority of extracted elements were Ca and Na, which were extracted in much greater abundance from the groundmass than from the feldspar phenocryst. In adsorption tests, the adsorption capacities of Pb, Fe and Cu within an hour of reaction time were 99, 98 and 97%, respectively, but that of As remained 25% for a full 24 hours. The high adsorption capacities of altered feldspar porphyry for Pb, Fe and Cu suggest its potential utilization as a heavy metal adsorbent fur water purification.

Regeneration of Zeolite 5A in the Adsorption Process for Isoprene Purification (이소프렌 정제를 위한 제올라이트 5A 흡착제 재생)

  • Jeon, Kyung-Jin;Yoo, Kye-Sang;Lee, Chang-Ha;Ahn, Byoung-Sung
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.272-276
    • /
    • 2010
  • Adsorption process for the removal of acetylene, especially 2-butyne, from isoprene was studied with zeolite as an adsorbent. In this work, zeolite 5A was selected to investigate the effects of various regeneration conditions by repeated adsorption experiments. The effect of regeneration temperature and desorption pressure was investigated to identity the optimum regeneration conditions. Repeated adsorption and desorption experiments were carried out for 10 cycles to confirm the efficiency of regeneration process under temperature of 423 K and desorption time of 16 h.

Characteristics of heavy metal adsorption by Korean marine algae

  • Park, Jun-Sub;Park, Chang-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.252-256
    • /
    • 2005
  • Removal of heavy metal ions from aqueous solution by brown sea weeds (Hizikia fusiformis, Laminaria, and Undaria pinnatifida) was 80-96% for lead, cadmium, chromium and copper ions. Fifty percent of the adsorption was completed in 4 min. The uptake of lead and cadmium ions followed Langmuir adsorption. In the adsorption experiments using single and multi metal ions 80-95% of metal ions were removed, and the removal efficiency was the best for lead ion.

  • PDF

사질토양에서의 PAC 함량에 따른 benzene의 흡착과 생분해 비교

  • Hwang, In;Kim, Dong-Ju
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.244-248
    • /
    • 2001
  • 사질 토양에서의 유기물 함량이 벤젠의 흡착과 생분해에 미치는 영향을 분석하기 위하여 다양한 분말 활성탄(PAC)함량 조건에서 비평형 배치 실험을 실시하였다. 비평형 배치실험에서 벤젠의 흡착과 생분해를 비교하기 위하여 BTEX 화합물에 대한 분해능이 우수한 Pseudomonas aeruginosam의 유무에 따른 두 가지의 실험 조건을 설정하였다. 실험 결과 반응 시간 1일까지 빠른 흡착양상을 보였으며, 2일부터 20일 까지는 매우 느린 흡착 양상을 보였다. 활성탄의 함량이 증가할수록 벤젠의 흡착은 증가하는 것으로 나타났으며, Pseudomonas aeruginosa가 첨가된 실험에서는 PAC 함량이 증가할수록 흡착은 증가하였으 나 bioavailability factor (B$_{f}$ ) 값이 감소하였다. 이는 bioavailability가 흡착에 의해 제한됨을 지시한다.

  • PDF

Preparation of Iron-Coated Sand and Arsenic Adsorption (철코팅 모래흡착제 제조 및 비소흡착)

  • Chang, Yoon-Young;Kim, Kwang-Sub;Jung, Jae-Hyun;Lee, Seung-Mok;Yang, Jae-Kyu;Park, Joon-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.697-703
    • /
    • 2005
  • Iron-coated sand(ICS) was prepared with variation of particle size of Joomoonjin sand, primary and secondary coating temperature, coating time, and dosage of initial Fe(III). An optimum condition of the preparation ICS was selected from the coating efficiency, stability of coated Fe(III), and removal efficiency of As(V). Coated amount of Fe(III) increased as primary coating temperature increased with smaller particle size of sand. Coating efficiency was quite similar over the investigated secondary coating temperature and time, while adsorption efficiency of As(V) onto ICS was severely reduced with ICS prepared at higher secondary coating temperature. By considering these results, an optimum secondary coating temperature and time for the preparation of ICS was selected as $150^{\circ}C$ and 1-hr, respectively. Coating efficiency increased us the dosage of initial Fe(III) up to 0.8 Fe(III) mol/kg sand and then no distinct increase was noted. Maximum As(V) adsorption was observed at 0.8 Fe(III) mol/kg sand. Secondary coating temperature and time were important parameters affecting stability of ICS, showing decreased dissolution of Fe(III) from ICS prepared at higher coating temperature and at longer coating time. From anionic type adsorption of As(V) onto ICS, it is possible to suggest the application of ICS for the removal of As(V) contaminated in acidic water system.