• Title/Summary/Keyword: 흡착제거

Search Result 1,249, Processing Time 0.032 seconds

분무진공동결건조기 개발

  • Ryu, Gyeong-Ha;Ban, Byeong-Min;Kim, Jae-Hyeong;Son, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.258-258
    • /
    • 2013
  • 최근 건조 제품의 양질화, 고급화 및 편의화가 요구되어 이를 충족시키기 위한 새로운 건조방법이 계속 개발 되어 왔다. 이러한 방법들 중에서 저온과 진공하에서 건조가 이루어지는 진공 동결 건조는 가장 완벽한 건조 방법으로 최근 실용화 되고 있다. 진공동결건조란 건조의 한 종류로 수분을 함유한 시료를 동결시킨 후 진공펌프를 이용하여 수증기압을 3중점 이하로 낮추어 얼음을 직접 증기로 만드는 승화의 원리에 의해서 얻어진다. 분무진공동결건조의 특징은 (1) 물리적구조의 보존성, (2) 화학적인 안정성, (3) 생물학적인 활동의 보존성, (4) 제품의 높은 복원성 및 재생성이다. 따라서 분무진공동결건조 기술은 크게 진공, 분무, 동결, 건조, 멸균 등과 같은 요소기술의 복합기술이라 할 수 있다. 분말을 제조하기 위해서 진공동결건조 후 분쇄하는 방법을 사용하나 본 방법에서는 정밀화학품 제조를 위해서 분무진공동결건조 방식을 사용한다. 이를 통하여 적당한 크기인 5~10 um의 입경 제조가 가능하고, 공기동력학적인 입경이 기존 방식에 비해 작아서 허파까지의 운반효율이 1.5~2배 우수하다. 화학, 의학 분야에서의 분무동결 건조는 주로 민감한 제품, 즉 생물학적 고유성의 손상 없이 물을 제거하는데 사용되어 영구적으로 저장 가능한 상태로 보관할 수 있으며 물의 첨가로 원상태로 복구할 수 있어서 매우 각광을 받고 있다. 의약용 냉동건조 제품은 항생물질, 박테리아, 혈청, 백신, 검사 약물, 단백질을 포함하는 생물공학 제품들, 세포, 섬유, 화학제품 등이 있으며 주로 vial 또는 ampule 상태로 건조가 이루어진다.본 연구에서는 원료를 $-194^{\circ}C$의 액체질소에 분무시켜 동결된 미립자를 형성한 후 진공 및 저온상태에서얼음의 승화(sublimation)에 기반한 1차 건조와 수증기 탈착(desorption)에 기초한 2차 건조 과정으로 구성된 분무진공동결건조기를 개발하였다. 분무동결 과정의 해석을 통해 2유체식 노즐을 통해 분무된 미세 입경의 액적이 액체 질소 표면까지 도달하는 회수률, 분무 노즐의 위치, 운전 조건 및 용기의 설계의 최적화를 수행하였다. 초기 액적속도, 분무노즐의 높이, 흡입구 추가에 따른 액적 유동 및 회수의 특성을 제시하였으며 이를 통한 분사시스템 고도화 가능성을 제시하였다. 구형의 미세 입자가 적층된 제품의 동결건조 공정의 해석은 흡착승화 모델(sorption sublimation model)을 기반으로 다음과 같은 열전달, 물질전달, 상변화 모델을 고려하여 유도되었다. 분무노즐 및 냉동/진공 배기계 시작품을 개발하여, 표면의 고다공도를 갖춘 입경 3~20 m 정도의 시료를 얻을 수 있으며, 동역학적 입경 5 m 충족함을 확인하였다.

  • PDF

CVD를 이용한 수직으로 정렬된 탄소나노튜브의 합성과 성장한계에 관한 메커니즘

  • Park, Sang-Eun;Song, U-Seok;Kim, Yu-Seok;Song, In-Gyeong;Lee, Su-Il;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.615-615
    • /
    • 2013
  • 탄소나노튜브(carbon nanotubes; CNT)는 강철보다 10~100배 견고할 뿐만 아니라 영률과 탄성률 은 각각 1.8 TPa, 1.3 TPa에 달하는 매우 우수한 기계적 강도를 지니고 있으며, 구리보다 좋은 전기 전도도와 다이아몬드의 2배에 이르는 열전도도를 지닌 물질이다. 이러한 탄소나노튜브의 우수한 특성을 이용하여 나노섬유, 고분자-탄소나노튜브의 고기능 복합체, 나노소자, 전계방출원(field emitter), 가스센서 등 다양한 분야로의 활용을 위한 연구가 진행되고 있다. 특히, 수백 ${\mu}m$ 이상의 길이로 수직 성장된 탄소나노튜브(VA-CNTs)의 합성은 길이 대 직경의 비(aspect ratio)가 비약적으로 증가하여 앞서 언급한 분야로의 활용이 더욱 유리하며, 그 중에서도 대량 생산, 나노섬유 및 나노복합체로서의 활용에 극히 유용하다. 최근에는 열 화학기상증착(thermal chemical vapor deposition; TCVD)법을 이용하여 탄소나노튜브의 구조를 제어하는 연구들이 많이 보고되고 있다. 열 화학기상증착을 이용한 수직 정렬된 탄소나노튜브의 합성에서 합성조건의 변화는 탄소나노튜브의 길이, 벽의 수, 직경, 결정성 등 구조에 큰 영향을 미친다. 탄소나노튜브는 이러한 구조에 따 라 물리적 특성이 달라지기 때문에 다양한 분야로의 응용을 위해서는 합성에 대한 근본적인 이해 가 절실히 요구된다. 본 연구에서는 열 화학기상증착법을 이용한 합성에서 성장압력의 변화에 따른 탄소나노튜브의 구조적 특성을 조사하였다. 성장압력의 변화는 탄소나노튜브의 밀도, 길이, 결정성에 큰 영향을 미치는 것을 주사전자현미경과 라만분광법을 이용하여 확인하였다. 이러한 결과 는 탄소나노튜브 박막(CNT forest)의 가장자리(edge)에 비정질 탄소(amorphous carbon)의 흡착으로 인한 나노튜브사이의 간격(intertube distance)이 좁아짐에 따른 가스공급 차단 효과로 설명이 가능 하다. 또한, 마이크로웨이브 플라즈마 화학기상증착법을 이용하여 탄소나노튜브를 합성하였다. 합성과정 중 산소(O2)를 주입 하였을 경우, 그렇지 않은 경우에 비하여 성장 속도가 증가하여 3시간 합성 시 2 mm가 넘는 수직 정렬된 탄소나노튜브를 합성 할 수 있었다. 이러한 결과는 과잉 공급 되어 탄소나노튜브로 합성되지 못하고 촉매금속의 표면과 탄소나노튜브의 벽에 비정질의 형태로 붙어있는 탄소 원자들을 추가 주입해 준 산소에 의하여 CO 또는 CO2 형태로 제거해 줌으로써 활성화된 촉매금속의 반응 시간을 향상 시켜주어 탄소공급이 원활하게 이루어졌기 때문이라 생각된다.

  • PDF

The Effects of Humidity Control Capability and Removal Toxic Gases of Activated Carbon to the Display Environment of Cultural Properties (문화재 전시 공간에 대한 활성탄의 습도 제어 및 유해가스 제거 효과 연구)

  • Kang, Sae Rom;Choi, Yu Ri;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.235-241
    • /
    • 2014
  • In this study, we are trying to verify humidity control capability of the exhibition environment of cultural property by measuring adsorption and desorption performance, the control ability of harmful substances by the adsorption experiments of harmful gases. In the experiment of adsorption and desorption performance, in the low humidity area, Artsorb desorbed overwhelmingly more than activated carbon whereas activated carbon absorbed more. Adsorption speed was faster slightly in Artsorb absorption speed was similar in both. In the middle humidity area, absorption by artsorb was slightly more and desorption was similar in both so characteristic of Artsorb didn't appear. Also, Adsorption speed was faster in activated carbon but in the process of desorption, the speed of Artsorb was faster. In adsorption experiment of harmful substances, the concentration in the environment with activated carbon was lower than one with Artsorb, but the difference appeared small. And as a result of observation of the difference in concentration due to adsorption of harmful gas by the change in the metal specimen, the most change was shown in lead specimen and the color difference between the lead specimens of the activated carbon and Artsorb appeared greatly.

Studies on the Recovery of Triglyceride from Used Shortening by Supercritical Fluid Extraction (초임계유체 추출에 의한 폐식용유의 재활용에 대한 기초연구)

  • Han, Byung-Seok;Yoon, Jung-Ro;Kwon, Young-An;Jung, Mun-Yhung;Kim, Kong-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1300-1307
    • /
    • 1999
  • Supercritical fluid extraction was applied to recycling triglyceride from used shortening. Used shortening and its fractions were analyzed with high performance size exclusion chromatography for their composition in triglycerides, polymer and low molecular weight compounds. Conjugated diene value and color of the fractions were also measured with a UV spectrophotometer and a colorimeter, respectively. Pressure and temperature ranges employed were $15{\sim}30$ MPa and $40{\sim}60^{\circ}C$, respectively. Concentration of fat in supercritical (SC) $CO_2$ ranged from $0.3\;X\;10^{-3}{\sim}7.4\;X10^{-3}(g\;fat/g\;CO_2)$. An exponential relation between concentration of fat in SC $CO_2$ and density was observed. Color of the extracts was light yellow which was very close to that of the fresh shortening. Low molecular weight compounds were preferentially concentrated in the initial fraction, while polymer was extracted in the final fraction. Conjugated diene value of the initial fractions was clearly lower than that of feed. It increased sharply as the polymer content in the fraction became significantly large.

  • PDF

Biological Properties of Protoplasts Produced by Sucrose-induced Autolysis of Clostridium saccharoperbutylacetonicum (Sucrose용액중(溶液中)에서 유기(誘起)되는 Clostridium saccharoperbutylacetonicum의 자기용해현상(自己溶解現象)에 의(依)하여 형성(形成)된 Protoplast의 성상(性狀)에 관(關)한 연구(硏究))

  • Choi, K.H.
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.136-142
    • /
    • 1978
  • The young cells of Clostridiunm saccaroperbutylacetonicum were rapidly autolysed by exposing them to the hypertonic solution of sucrose(0.3-0.6M) without any other supplement to decompose the rigid cell wall. The cells were converted into the spherical cells by lysis. The spherical cells had following properties: (1) they were absent in the cell wall and osmotically fragile. (2) they were stabilized in the existence of 0.4M sucrose and 5mM $MgSO_4$ (3) they were resistant against adsorption of phage particles. (4) they allowed infection of the isolated phage DNA and produced progeny phage particles. (5) they were able to biosynthesize their macromolecules for a few hours according to a balanced manner of biosynthesis. (6) they were able to produce the bacteriocin particles by mitomycin C treatment. (7) they were unable to multiply. These results were all in the level of typical properties of bacterial protoplasts. It was apparent that the spherical cells formed by lysis occcurring by treatment with hypertonic sucrose were protoplasts.

  • PDF

An Experimental Study on the Sorption of Uranium(VI) onto a Bentonite Colloid (벤토나이트 콜로이드로의 우라늄(VI) 수착에 대한 실험적 연구)

  • Baik Min-Hoon;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.235-243
    • /
    • 2006
  • In this study, an experimental study on the sorption properties of uranium(VI) onto a bentonite colloid generated from Gyeongju bentonite which is a potential buffer material in a high-level radioactive waste repository was performed as a function of the pH and the ionic strength. The bentonite colloid prepared by separating a colloidal fraction was mainly composed of montmorillonite. The concentration and the size fraction of the prepared bentonite colloid measured using a gravitational filtration method was about 5100 ppm and 200-450 nm in diameter, respectively. The amount of uranium removed by the sorption reaction bottle walls, by precipitation, and by ultrafiltration was analyzed by carrying out some blank tests. The removed amount of uranium was found not to be significant except the case of ultrafiltration at 0.001 M $NaClO_4$. The ultrafiltration was significant in the lower ionic strength of 0.001 M $NaClO_4$ due to the cationic sorption onto the ultrafilter by a surface charge reversion. The distribution coefficient $K_d$ (or pseudo-colloid formation constant) of uranium(VI) for the bentonite colloid was about $10^4{\sim}10^7mL/g$ depending upon pH and ionic strength of $NaClO_4$ and the $K_d$ was highest in the neutral pH around 6.5. It is noted that the sorption of uranium(VI) onto the bentonite colloid is closely related with aqueous species of uranium depending upon geochemical parameters such as pH, ionic strength, and carbonate concentration. As a consequence, the bentonite colloids generated from a bentonite buffer can mobilize the uranium(VI) as a colloidal form through geological media due to their high sorption capacity.

  • PDF

Applicability Evaluation of Two-stages and Dual Media Filtration System by the Small-scale Pilot Plant (이단이층 복합여과시스템의 소규모 파일롯 플랜트 적용성 평가)

  • Woo, Dal-Sik;Song, Si-Byum;Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.857-864
    • /
    • 2009
  • This study aimed at developing the two stage and dual filtration system. It has a sand + activated carbon layer above the underdrain system and a sand layer above the middledrain system for pretreatment. When retrofitting an old filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new site. In order to extend the filtering duration, the upper layer of the filter bed consists of the rapid sand filtration with large particles which pre-treats and removes coarse particles and turbidity matters. The middle layer has biological activated carbon(BAC) and granular activated carbon(GAC) to eliminate dissolved organic matters, disinfection by-products precursors etc. The lower layer consists of the sand filtration for the post filtering mode. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in the S water treatment plant in Kyounggi-Do. The stability of turbidity was maintained below 1NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual filtration system, which is almost 2 times higher than S WTP. From analysis result of HPC along the depth of activated carbon + sand layer at 2nd stage, microorganism was mostly not detected, however, increment of HPC was shown as it becomes deeper. It indicates that growth of microorganism is occurred at activated carbon layer.

Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon (영가철이 고정된 입상활성탄 제조를 위한 최적 합성조건 도출)

  • Hwang, Yuhoon;Mines, Paul D.;Lee, Wontae;Andersen, Henrik R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.521-527
    • /
    • 2016
  • Nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, however, the nano size should be of concern when nZVI is considered for water treatment, due to difficulties in recovery. The loss of nZVI causes not only economical loss, but also potential risk to human health and environment. Thus, the immobilization onto coarse or structured support is essential. In this study, two representative processes for nZVI immobilization on granular activated carbon (GAC) were evaluated, and optimized conditions for synthesizing Fe/GAC composite were suggested. Both total iron content and $Fe_0$ content can be significantly affected by preparation processes, therefore, it was important to avoid oxidation during preparation to achieve higher reduction capacity. Synthesis conditions such as reduction time and existence of intermediate drying step were investigated to improve $Fe_0$ content of Fe/GAC composites. The optimal condition was two hours of $NaBH_4$ reduction without intermediate drying process. The prepared Fe/GAC composite showed synergistic effect of the adsorption capability of the GAC and the degradation capability of the nZVI, which make this composite a very effective material for environmental remediation.

The Rate of Superoxide Radical (${O_2}^-$.) Production in Normal Fenton's Reagent at Different pHs (펜톤반응에서 pH의 변화에 따른 superoxide radical (${O_2}^-$.)의 생성)

  • 김용수;공성호;김재호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.73-81
    • /
    • 2002
  • In normal Fenton's reagent, the reductive mechanism of carbon tetrachloride (CT) with superoxide radical (${O_2}^-$.) was observed and the rate of ${O_2}^-$. production was investigated as a function of $H_2O$$_2$ concentration and pH. As pH was increased, the rate of 1-hexanol degradation was rapidly decreased from 90% (at pH 3) to 5% (at pH 11). On the other hand, more degradation of carbon tetrachloride was observed at higher pH regimes indicating Fenton's reaction is an oxidant-reductant co-existing system at neutral pHs. The rate of $O_2^{-}$ . production was observed at different $H_2$$O_2$ concentrations and at different pHs. The rate increased from (45.3$\pm$7.8) x $10^{-6}$ M/s to (151.0$\pm$26.2) x $10^{-6}$ M/s ($294mM H_2$$O_2$) at pH 11: the rate 3150 increased from (22.1$\pm$3.8) x $10^{-6}$ M/s at pH 7 to (151.0$\pm$26.2) x $^10{-6}$ M/s at pH 11 with 294mM $H_2$$O_2$, These results showed that Fenton's reagent could be applied at wide pH regimes. Especially, carbon tetrachloride, which can not be easily adsorbed to soils and then can be dissolved into groundwater causing a cancer, could be efficiently treated by Fenton's reagent.reagent.

Effect of Carbon Felt Oxidation Methods on the Electrode Performance of Vanadium Redox Flow Battery (탄소펠트의 산화처리 방법이 바나듐 레독스 흐름 전지의 전극 성능에 미치는 영향)

  • Ha, Dal-Yong;Kim, Sang-Kyung;Jung, Doo-Hwan;Lim, Seong-Yop;Peck, Dong-Hyun;Lee, Byung-Rok;Lee, Kwan-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.263-270
    • /
    • 2009
  • Carbon felt surface was modified by heat or acid treatment in order to use for the electrode of a redox-flow battery. Polymers on the surface of carbon felt was removed and oxygen-containing functional group was attached after the thermal treatment of carbon felt. Thermal treatment was better for the stability of the carbon structure than the acid treatment. Oxygen-containing functional group on the thermally treated carbon felt at 500$^{\circ}C$ was confirmed by XPS and elementary analysis. BET surface area was increased from nearly zero to 96 $m^2/g$. Thermally treated carbon felt at 500$^{\circ}C$ showed lower activation polarization than the thermally treated carbon felt at 400$^{\circ}C$ and the acid-treated carbon felt in the cyclicvoltammetry and polarization experiments. The thermally treated carbon felts at 400$^{\circ}C$ and 500$^{\circ}C$ and the acid-treated carbon felt was applied for the electrode to prepare vanadium redox flow battery. Voltage efficiencies of charge/discharge were 86.6%, 89.6%, and 96.9% for the thermally treated carbon felts at 400$^{\circ}C$ and 500$^{\circ}C$ and the acid-treated carbon felt, respectively.