• Title/Summary/Keyword: 흡착속도론

Search Result 53, Processing Time 0.028 seconds

Kinetic and Thermodynamic Studies of Brilliant Green Adsorption onto Carbon/Iron Oxide Nanocomposite (탄소/산화철 나노복합재료의 Brilliant Green 흡착에 대한 반응속도론적, 열역학적 연구)

  • Ahmad, Rais;Kumar, Rajeev
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.125-130
    • /
    • 2010
  • In the present work, we have investigated the adsorption efficiency of carbon/iron oxide nanocomposite towards removal of hazardous brilliant green (BG) from aqueous solutions. Carbon/iron oxide nanocomposite was prepared by chemical precipitation and thermal treatment of carbon with ferric nitrate at $750^{\circ}C$. The resulting material was thoroughly characterized by TEM, XRD and TGA. The adsorption studies of BG onto nanocomposite were performed using kinetic and thermodynamic parameters. The adsorption kinetics shows that pseudo-second-order rate equation was fitted better than pseudo-first-order rate equation. The experimental data were analyzed by the Langmuir and Freundlich adsorption isotherms. Equilibrium data was fitted well to the Langmuir model with maximum monolayer adsorption capacity of 64.1 mg/g. The thermodynamic parameters were also deduced for the adsorption of BG onto nanocomposite and the adsorption was found to be spontaneous and endothermic.

Adsorption of Cephalomannine onto Sylopute: Isotherm, Kinetic and Thermodynamic Characteristics (실로퓨트의 세팔로마닌 흡착: 등온흡착식 및 속도론적·열역학적 특성)

  • Kim, Hyunsik;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.219-224
    • /
    • 2019
  • In this study, the adsorption characteristics of cephalomannine on commercial adsorbent Sylopute were investigated using different parameters such as adsorption temperature, time, and initial cephalomannine concentration for the efficient separation of Taxus chinensis-derived cephalomannine by adsorption process. The Temkin isotherm model showed good fit to the equilibrium adsorption data. The adsorption capacity decreased with increasing temperature and the adsorption of cephalomannine onto Sylopute was physical in nature. Adsorption kinetic data fitted well with pseudo-second-order kinetic mode. According to the intraparticle diffusion model, film diffusion and intraparticle diffusion did not play a key role in the entire adsorption process. The process of cephalomannine adsorption onto Sylopute was exothermic and spontaneous. In addition, the isosteric heat of adsorption was constant even with variation in surface loading indicating homogeneous surface coverage.

A Study on the Removal Characteristics of Phenol Using Waste CDQ Dust as Adsorbent (폐CDQ 분진을 흡착제로 한 페놀제거특성에 관한 연구)

  • Kim, Jin-Wha;Lee, Jung-Min;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1213-1223
    • /
    • 2000
  • The adsorption characteristics of phenol has been studied by using CDQ (Cokes Drying Quenching) dust as an adsorbent. The adsorption capacity of CDQ dust was shown to be 42% about removal for 300 ppm phenol solution at the equilibrium adsorption time of 60 min. Removal percentage of phenol increased as the initial phenol concentration was raised in the experimental conditions and the adsorption behavior was explained well by Freundlich adsorption isotherm. Kinetic study showed that the adsorption followed 1st, 1.5th, and 2nd-order rate equation in the sequence as the adsorption time passed. Since the adsorption amount of phenol was increased as the adsorption temperature was raised, the adsorption was thought to be endothermic, and several thermodynamic parameters have been calculated based upon experimental data. Adsorbed amount of phenol on CDQ dust changed little according to the variation in the solution pH except for the slight decrease under the strong alkaline condition.

  • PDF

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(II) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(II)-흡착속도론을 중심으로)

  • Na, Choon-Ki;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.804-811
    • /
    • 2011
  • The aim of this study is to evaluate the applicability of adsorption models for understanding adsorption properties of adsorbents. For this study, the adsorption charateristics of $NO_3^-$ by commercial anion exchange resin, PA-308, were investigated in bach process. The adsorption kinetic data for $NO_3^-$ by anion exchange resin showed two stage process comprising a fast initial adsorption process and a slower second adsorption process. Both the pseudo-first-order kinetic model and the pseudo-second-order kinetic model could not be used to predict the adsorption kinetics of $NO_3^-$ onto anion exchange resin for the entire sorption period. Only the fast initial portion ($t{\leq}20min$) of adsorption kinetics was found to follow pseudo-first-order kinetic model and controlled mainly by external diffusion that is very fast and high, whereas, the slower second portion (t > 20 min) of adsorption kinetics seems to be controlled by a second-order chemical reaction and by intraparticle diffusion.

Hydrogen Spillover Kinetics - I. Effect of Surface Morphology on [$Pt/MoO_{3}$] Catalyst (수소 spillover 속도론 - I. $Pt/MoO_{3}$ 촉매의 표면 형상 변화)

  • Kim Jin Gul;Kim Seong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.6
    • /
    • pp.491-494
    • /
    • 2004
  • [ $H_2$ ] uptake into $Pt/MoO_{3}$ was enhanced with an increased calcination temperature. Selective CO pulse chemisorption demonstrated that free Pt surface area was decreased as calcination temperature was increased. Characteristic techniques were dedicated to elucidate the closer contact at adlineation sites between Pt and $MoO_3$ substrates. Calcination resulted in supplying the hydrogen access into more $MoO_3$ particles and controlling the kinetics of hydrogen uptake.

  • PDF

Thermodynamic Analysis of Phenol Adsorption by Powdered Activated Carbon (활성탄에 의한 페놀 흡착의 열역학적 연구)

  • Kim, Hwanik;Lee, Myoung-Eun;Kang, Seoktae;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • The adsorption characteristics of phenol by the powdered activated carbon (PAC) were investigated by series of batch experiments. The pseudo-second-order model described the adsorption kinetics adequately with correlation coefficients over 0.999, indicating chemical adsorption as the rate-limiting step. The kinetic rate constants were from 0.55 to 19.81 mg $mg^{-1}min^{-1}$. The adsorption isotherm followed the Langmuir isotherm, indicating the homogeneous mono-layer adsorption onto the surface of the adsorbent. The values of activation energy, enthalpy and entropy were 17.44 kJ $mol^{-1}$, -8.26 kJ $mol^{-1}$ and -18.94 J $mol^{-1}K^{-1}$, respectively. The Gibbs free energy was in the range of -2.89~-2.14 kJ $mol^{-1}$. The results show that the phenol adsorption is physical, spontaneous and exothermic reaction.

Rates and Mechanism of Adsorption of Transition Metal Ions on Polystyrene Resins Supported Diethylenetriamine (디에틸렌트리아민을 지지시킨 폴리스틸렌수지에 대한 전이금속이온의 흡착속도와 메카니즘)

  • Kim, Sun-Deuk;Shin, Yun-Yeol;Kim, Chang-Su
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.465-471
    • /
    • 1999
  • Chloromethylated polystyrene resins supported diethylenetriamine of linear and claw types have been prepared by the reaction of diethylenetriamine with chloromethylated polystyrene. The kinetics of adsorption of transition metal ions on polystyrene resins were measured by the limited-bath technique. This paper reports the results of the diffusion coefficients, entropies of activation, and free energies of activation. The ratedetermining step of the adsorption of transition metals on the resins is a process of diffusion through the particles.

  • PDF

Modeling of the Nitrate Adsorption Kinetics onto $ZnCl_2$ Treated Granular Activated Carbon (염화아연으로 표면개질된 입상활성탄의 질산성질소 흡착속도의 모델링 연구)

  • Ji, Min-Kyu;Jung, Woo-Sik;Bhatnagar, Amit;Jeon, Byong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.21-26
    • /
    • 2008
  • Nitrate adsorption from aqueous solutions onto zinc chloride ($ZnCl_2$) treated coconut Granular Activated Carbon (GAC) was studied in a batch mode at two different initial nitrate concentrations (25 and 50 mg/L). The rate of nitrate uptake on prepared media was fast in the beginning, and 50% of adsorption was occurred within 10 min. The adsorption equilibrium was achieved within one hour. The mechanism of adsorption of nitrate on $ZnCl_2$ treated coconut GAC was investigated using four simplified kinetic models : the rate parameters were calculated for each model. The kinetic analysis indicated that pseudo-second-order kinetic with pore-diffusion-controlled was the best correlation of the experimental kinetic data in the present adsorption study.