• Title/Summary/Keyword: 흡입 유체

Search Result 212, Processing Time 0.025 seconds

Experimental Studies on Flow Characteristics and Thrust Vectoring of Controlled Axisymmetric Jets (원형분사제트 조절을 통한 유동특성 및 제트 벡터링의 효과 고찰)

  • 조형희;이창호;이영석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.33-45
    • /
    • 1997
  • Axisymmetric shear layers around a free jet is forced by co-flowing and counter-flowing secondary jets from/to an annular tube around the jet nozzle. The jet potential core extends far downstream with co-flowing secondary jets due to inhibited vortex developing and pairing. For counter-flowing cases, the axisymmetric shear layer around the jet transits from convective instability to absolute instability for velocity ratios R=1.3~l.65 for the uniform velocity jets. Consequently, the jet potential core length increases and the turbulence level in the jet core is reduced significantly. The jets are controlled better with extension collars attached to the outer nozzle exit because the annular secondary flow is guided well by the extension collars. For the vectoring of jet, the annular tube around the jet is divided in two parts and the only one part is used for suction. The half suction makes the different shear layer around the jet and vectoring the jet by Coanda effect. The vectoring and turbulent components are varied significantly by the suction ratio. The experiments are carried out to investigate the characteristics of forced free jets using flow visualization, velocity and turbulence measurements.

  • PDF

Preliminary Design for Axisymmetric Supersonic Inlet using Conical Flow Solution and Optimization Technique (원추 유동 해와 최적화 기법을 이용한 축대칭 초음속 흡입구의 예비 설계)

  • 정석영
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.11-19
    • /
    • 2006
  • Design program was developed to determine the external shape of the supersonic axisymmetric inlet by combining conical flow solver and approximation technique of conical shock with gradient-based optimization algorithm. Inlet designs were carried out under various operation conditions through optimization with respectively two object functions which consist of pressure recovery and cowl drag and with constraints about shock position, cowl shape, and minimum throat area. New object function consisting of pressure recovery and drag of the external cowl was proposed and the optimized shapes from new object function were compared to the ones from the old object function which maximize only the pressure recovery. Through computations of inviscid and turbulent flow, was tested performance of the design program and performance estimated in design program agreed well with computation results for inlets designed under various flight conditions.

Performance Tests of the Fuel Pump for a Turbopump (터보펌프용 연료펌프의 성능 시험)

  • Kim, Dae-Jin;Hong, Soon-Sam;Choi, Chang-Ho;Kim, Jinhan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.655-659
    • /
    • 2004
  • Performance tests of the fuel pump for a turbopump unit have been successfully carried out in water environment. The tests are performed to evaluate the hydraulic and cavitation performances. The head and volute pressure distribution of the fuel pump followed the conventional similarity rule - unlike this, the secondary passage pressure distribution showed a small deviation from the conventional similarity rule. Also, critical cavitation number decreased as the rotational speed of the pump increased.

  • PDF

기미부 형상과 엔진화염에 의한 유도탄의 항력 영향 수치해석

  • 정석영;안창수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.23-27
    • /
    • 2002
  • 천음속으로 비행하는 공기흡입유도탄의 경우, 비행거리 및 요구기동을 충족시키기 위해서는 추진제트에 의해 변화하는 기체 기미부의 압력항력을 정확히 예측하고 이 항력을 감소시키기 위한 기미부 형상설계는 매우 중요하며 필수적이다. 제트 Plume에 의한 기체 기미부 및 base의 압력분포에 따른 항력해석을 난류모델링을 고려한 수치해석 결과를 제시한다. Jet plume의 크기 및 배기가스 조건에 따른 항력변화, 및 기미부 형상에 따른 항력변화 그리고 천음속 마하수에 따른 결과 등을 제시한다.

  • PDF

Numerical Study of Sound Radiation from curved intake (굴곡형 흡입관에서의 소음 방사 해석)

  • Shim I. B.;Lee D. J.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.88-94
    • /
    • 2002
  • Curved intakes are commonly used from commercial aircraft to military missile. Sound radiation from the intake of air vehicle affects cabin noise, community noise and military detection. In this paper, Sound radiation from curved intake is computed using the high order, high resolution scheme. The generalized characteristic boundary conditions, adaptive nonlinear artificial dissipation model and conformal mapping for high order, high resolution scheme are used. The geometric change of curved intake and the frequency of acoustic source are considered. Two dimensional Euler equations are solved for theses analyses.

  • PDF

Numerical Investigation of Effects of Tip Clearance Height on Fan Performance and Tip Clearance Flow in an Axial Fan of the Cooling Tower (냉각탑용 축류팬의 팁 간격이 팬 성능 및 틈새 유동에 미치는 영향에 관한 수치해석적 연구)

  • Oh, Keon-Je
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.44-50
    • /
    • 2012
  • 팁 간격의 크기가 냉각탑용 축류팬의 성능과 누설 유동에 미치는 영향을 조사하기 위해서 서로 다른 2가지 팁 간격을 가진 경우에 대해서 점성유동을 해석하였다. 케이싱 내에서 작동하는 축류팬 주위의 유동을 연속방정식, Navier-Stokes 방정식 등을 지배방정식으로 사용하여 수치해석 하였다. 난류유동에 나타나는 레이놀즈 응력은 ${\kappa}-{\epsilon}$ 난류모델을 사용하여 계산하였다. 전체적으로 H형 격자계를 사용하였으며, 팁 주위의 유동을 해석하기 위해서 팁 영역 주위에 부분적으로 조밀한 격자를 두었다. 팁 간격이 증가하면 누설 유동의 증가로 인한 유동 손실의 증가로 전압상승과 수력효율이 감소하였다. 팬 직경에 대한 팁 간격이 0.4%에서 1.0%로 증가하면 전압상승 값이 약 10% 정도 감소하였으며, 수력효율은 약 3% 정도 감소하였다. 팁 간격이 팁 근처 날개 주위의 압력에 미치는 영향을 보면, 팁 간격이 증가하여 누설 유동이 증가하면 흡입면과 압력면의 압력차가 전연 부근에서 감소함을 알 수 있었다. 누설 와류의 중심은 코드를 따라서 흡입면으로 부터 떨어져 나가면서 형성됨을 알 수 있었다. 누설 와류의 위치를 보면 팁 간격이 증가하면 와류 중심의 위치가 흡입면 쪽으로 이동하고, 흡입면에서 떨어진 거리도 날개 후반부에서 증가 폭이 커지는 포물선 형태로 증가함을 알 수 있었다.

The Study of Aerodynamic Characteristics of Ram-jet with Different Intake (서로 다른 램제트 흡입구에 따른 공기역학적 특성 연구)

  • Park, Soon-Jong;Park, Jong-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.9-16
    • /
    • 2010
  • The SFRJ(Solid Fuel Ram-Jet) propulsion is attractive for projectiles because of the combination of high propulsive performance and low system complexity more than conventional projectiles. The Objective of this research was to characterize the inlet aerodynamic characteristics (center-body & pitot type) in SFRJ. Diffuser static pressure & combustion chamber pressure was tested and the AoA was changed $0^{\circ}$ and $4^{\circ}$ at Mach number of 3.0 for performance estimate. The performance study of inlet was carried out with the Schlieren system and Supersonic cold-flow system. Under mach 3.0, the center-body showed twice higher total pressure recovering ratio than the pitot type. A Computational fluid dynamic solution is applied internal flow of inlet and the solutions are compared with experimental results.

Conceptual Design of An Underwater Vehicle Powered by Water-breathing Ramjet (해수흡입 램젯추진 수중운동체 개념설계)

  • Um, Jaeryeong;Lim, Hyunae;Jin, Wansung;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.50-60
    • /
    • 2014
  • Many countries are paying efforts to the research and development of water-breathing ramjet propulsion for submersible vehicle with the super-cavitation which makes traveling at high speed in underwater possible. In this study, a conceptual design of an underwater vehicle with water-breathing ramjet was carried out. Mission profiles and operating conditions are determined by examining the operation environment. Drag is estimated based on the theories of super-cavitation and fluid mechanics. The sizing and performance analysis of the components were performed using thrust required, thrust and specific impulse of designed engine were verified.

Dust collection optimization of tunnel cleaning vehicle with cyclone-based prefilter (사이클론 전처리부를 지닌 터널집진차량의 집진효율 최적화)

  • Jeong, Wootae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.679-686
    • /
    • 2018
  • A new dust cleaning vehicle is needed to remove fine and ultra-fine particulate matter in subway tunnels. Therefore, the recently developed tunnel cleaning vehicle is equipped with an efficient suction system and cyclone-based prefilter to handle ultra-fine particles. To treat various sizes of particulate matter with an underbody suction system, this paper proposes a cyclone-based prefilter in the suction system and validates the dust removal efficiency through Computational Fluid Dynamics (CFD) analysis using ANSYS FLUENT. Using the created surface and volume mesh, various particle sizes, materials, and fan flow rates, the particles were tracked in the flow with a discrete phase model. As a result, the dust cleaning vehicle at a normal operational speed of 5km/h requires at least a fan flow rate of $1500m^3/min$ and 100mm of suction inlet height from the tunnel track floor. Those suction modules and cyclone-based prefilters in the dust cleaning vehicle reduces the dust accumulation load of the electric precipitator and helps remove the accumulated fine and ultra-fine dust in the subway tunnel.

The evaluation of performance and flow characteristics due to the length of throat and diffuser for ship's ejector (선박용 Ejector의 직관부와 디퓨저 길이 변화에 따른 성능비교 및 유동특성에 관한 연구)

  • Lee, Young-Ho;Kim, Mun-Oh;Kim, Chang-Goo;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.31-38
    • /
    • 2014
  • Ejector is a simple device which can transport a low-pressure secondary flow by using a high-pressure primary flow. The efficiency of the ejector system is relatively very low, compared to other fluid transport devices driven mainly by the forces acting on the normal direction. However, its major advantage is a simple structure with no moving parts, and it transports a large amount of fluid with a small driving energy. In this study, the performance of side-type liquid ejector commonly used in ships; is analyzed by using experimental and CFD methods under steady and incompressible flow condition by varying the length of the throat and diffuser, the flow pattern and suction phenomenon were studied in detail.