• Title/Summary/Keyword: 흡입 성능

Search Result 356, Processing Time 0.039 seconds

Performance characteristics of turbocharger of diesel engine (디젤 기관의 터보 과급 특성)

  • 이창식;이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 1991
  • 디젤 기관의 출력 성능을 향상시키기 위하여 실린더 내로 흡입되는 공기를 적극적인 방법으로 밀도가 높은 공기로 압입시키는 과급기는 디젤기관의 종합 성능을 결정하는 중요한 인자가 되고 있다. 이와 같은 관점에서 터보 과급기의 성능을 규명하고 과급기의 특성에 관한 사항을 열역학적 해석과 압축기 및 터빈의 성능 특성을 살펴보기로 한다. 여기서는 주로 과급기의 성능 특성을 중심으로 다루기로 한다.

  • PDF

Cryogenic Performance Test of LOX Turbopump in Liquid Nitrogen (액체질소를 이용한 산화제펌프의 극저온 성능시험)

  • Kim, Jin-Sun;Hong, Soon-Sam;Kim, Dae-Jin;Choi, Chang-Ho;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.391-397
    • /
    • 2010
  • Performance tests of a liquid-oxygen pump were carried out using liquid nitrogen (LN2) as a working fluid in a cryogenic turbopump test facility in Korea Aerospace Research Institute (KARI). The tests were performed at 30-55% of the design rotational speed, and the results were compared with those from a water test. The experimental results confirmed the similarity of the hydraulic performance, which allows the prediction of the pump performance at a design rotational speed of 20,000 rpm. The overall cavitation performance of the pump in the cryogenic environment was better than that in the water environment for all ranges of flow rates and rotational speeds. Critical cavitation number at the design flow rate was determined as 0.012 from the cryogenic test, and as 0.024 from the water test. The improved cavitation performance is due to the thermodynamic effect in cryogenic fluids.

Effect on Flow Distortion of S-Duct by Boundary Layer Suction (경계층 흡입이 S-Duct의 유동 왜곡에 미치는 영향성 연구)

  • Baeg, Seungyong;Lee, Jihyeong;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • An intake of Aircraft becomes S-shaped geometry due to spatial limitation or procuring survivability. But curvature of the S-shaped geometry makes secondary flow or flow separation which is the cause of non-uniform pressure distribution. In this study, boundary layer suction is applied to RAE M 2129 S-Duct by attaching sub duct. Design variable is suction location and angle. A mass flow rate drawn out by suction at the sub duct outlet is constant over every model. A grid dependency test was conducted to verify validity of computation. The comparison among the CFD (Computation Fluid Dynamics), ARA experimental result, and ARA computation result of non-dimensional pressure distribution on the Port side and Starboard Side confirmed the validity of CFD. In this study, Distortion Coefficient was used for evaluating aerodynamic performance of S-Duct. The analysis, which was about flow separation, vortex, mass flow rate distribution, and pressure distribution were also investigated. Maximum 26.14% reduction in Distortion Coefficient was verified.

Study on the Buzz Characteristics of Supersonic Air Intake at Mach 2.5 (마하 2.5 초음속 공기흡입구의 버즈 특성에 관한 연구)

  • Lee, Hyoung-Jin;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.331-335
    • /
    • 2006
  • Theoretically, stable operations of an inlet are achieved at the design condition. However, at off-design conditions supersonic inlets often encounter the problem of aerodynamic instability, called inlet buzz. During inlet buzz, supersonic inlets exhibit considerable oscillation of the shock system in front of the inlet and corresponding large pressure fluctuations downstream. This phenomenon results in decrease of engine performance. An experimental and numerical study was conducted to investigate the phenomenon of supersonic inlet buzz on a generic, axisymmetric, external-compression inlet with a single-surface center-body. This study suggest that intermittent buzz exist and the frequency become to be large as increasing the back pressure.

  • PDF

Mach 5 Performance Verification of Free-jet Type Ground Propulsion Test Facility for Scramjet Engine Intake Test (스크램제트 엔진 흡입구 시험을 위한 자유제트형 지상추진시험설비의 마하 5 성능 검증)

  • Lee, Yang Ji;Yang, Inyoung;Lee, Kyung Jae;Oh, Jung Hwan;Choi, Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.77-87
    • /
    • 2022
  • In order to perform the scramejt engine intake ground test using the Scramjet Engine Test Facility(SETF) of the Korea Aerospace Research Institute. we introduced the test availability check procedure that is generally conducted. The design process of the newly manufactured Mach 5 nozzle for the scramjet intake test was summarized, a device for checking the core flow distribution of the nozzle was explained, and the core flow test analysis results were written. Through a series of test results, it was confirmed that the intake was located in the new Mach 5 nozzle core.

A Review on Measurement Techniques and Constitutive Models of Suction in Unsaturated Bentonite Buffer (불포화 벤토나이트 완충재의 수분흡입력 측정기술 및 구성모델 고찰)

  • Lee, Jae Owan;Yoon, Seok;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.329-338
    • /
    • 2019
  • Suction of unsaturated bentonite buffers is a very important input parameter for hydro-mechanical performance assessment and design of an engineered barrier system. This study analyzed suction measurement techniques and constitutive models of unsaturated porous media reported in the literature, and suggested suction measurement techniques and constitutive models suitable for bentonite buffer in an HLW repository. The literature review showed the suction of bentonite buffer to be much higher than that of soil, as measured by total suction including matric suction and osmotic suction. The measurement methods (RH-Cell, RH-Cell/Sensor) using a relative humidity sensor were suitable for suction measurement of the bentonite buffer; the RH-Cell /Sensor method was more preferred in consideration of the temperature change due to radioactive decay heat and measurement time. Various water retention models of bentonite buffers have been proposed through experiments, but the van Genuchten model is mainly used as a constitutive model of hydro-mechanical performance assessment of unsaturated buffers. The water characteristic curve of bentonite buffers showed different tendencies according to bentonite type, dry density, temperature, salinity, sample state and hysteresis. Selection of water retention models and determination of model input parameters should consider the effects of these controlling factors so as to improve overall reliability.

Water Performance Test of Pumps for a 7 Ton Class Rocket Engine (7톤급 로켓엔진용 펌프 수류 성능시험)

  • Hong, Soonsam;Kim, Daejin;Choi, Changho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.89-95
    • /
    • 2015
  • Performance test was conducted for an oxidizer pump and a fuel pump for a 7 ton class rocket engine, by using water. The pumps were driven by an electric motor. The hydrodynamic performance and the suction performance were measured at flow ratio of the design and off-design conditions. Head-flow curve, efficiency-flow curve, and head-cavitation number curve were obtained. It is confirmed that the pumps can satisfy the design requirements of hydrodynamic performance in terms of the head and the efficiency. The pumps also satisfied the design requirements of suction performance.

A Study on Buzz Margin Control in Supersonic Engine Intake using PID Controller (PID 제어기를 이용한 초음속 엔진 흡입구의 버즈마진 제어에 관한 연구)

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Kang, Myoung-Cheol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.88-92
    • /
    • 2009
  • Total pressure recovery ratio in intake is crucial factor to the operational characteristics of supersonic propulsion system because it does not compress inlet air mechanically by compressor, but does compress inlet air by ram compression. As the result of that the dynamic characteristic analysis of engine was performed before the controller was designed, it could be ascertained when the AoA of flight vehicle increases, the buzz margin decreases so that the shock wave produced outside intake in the specified area according to flight operation's characteristics. Therefore the PID control algorithm was designed to be controlled buzz margin that the characteristic of shock wave could meet the requirement of performance in intake. The PID controller was designed that the buzz margin value is being positive number using the control variables; fuel flow and nozzle throat area.

  • PDF

Performance Enhancement of Dual-Inlet Centrifugal Blower by Optimal Design of Splitter (스플리터 형상최적화에 의한 양흡입 원심블로어 성능개선)

  • Lee, Jong Sung;Jang, Choon Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1065-1072
    • /
    • 2014
  • The shape of an impeller splitter for a dual-inlet centrifugal blower was optimized to enhance the blower performance. Two design variable, the normalized chord and pitch of a splitter, were used to evaluate the blower performance and internal flow fields based on the three-dimensional flow analysis. The blower performance obtained using this numerical simulation had a maximum error of 4 percent compared to that in an experiment at the design flow condition. The shape optimization of the splitter successfully increased the blower efficiency and pressure by 3.65 and 1.14 percent compared to the reference values. The blower performance was increased by reducing the flow separation near the blade suction surface by optimizing the shape of the splitter, which produced a pressure increase at the outlet of the volute casing.