• Title/Summary/Keyword: 흡입온도

Search Result 123, Processing Time 0.025 seconds

Fundamental Experiment on the Flow Characteristics inside the Exhaust Duct of Cone Calorimeter (콘 칼로리미터의 배기 덕트 내부 유동 특성 기초 실험)

  • Shin, Yeon Je;You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.35-40
    • /
    • 2019
  • In this study, the mass flow rate of the heat release rate equation, which is the major factor of the oxygen consumption method, was analyzed for the fundamental investigation of the cone-calorimeter (5 m length and 0.3 m diameter). The shapes of a completely empty inside, 3 mm pore diameter mesh and pore diameter 10 mm honeycomb with 0.76 porosity were constructed using the cone-calorimeter. To calculate the mass flow rate, four bi-directional probes and thermocouples were installed in a uniform position in the vertical direction of flow. The velocity gradient and flow perturbation were measured from the increase in Reynolds number. As the flow capacity increased, the speed gradient increased in all three shapes relative to the turbulence intensity. In addition, the deviation of extended uncertainty to the mass flow was completely low in the order of empty space, mesh (dp = 3 mm) and honeycomb (dp = 10 mm and 𝜖 = 0.76) at the 95% confidence level. The results can be used in designs to improve the flow stability of the cone calorimeter.

Development of Rapid Salting Method for Seasoning Eggs using a Temperature Change Method (온도 변화 방법을 이용한 조미계란의 신속 가염 방법)

  • Kim, Dong-Ho;Yoo, Hyun-Jae;Yoo, Jae-Yeol;Park, Yeo-Jin;Choi, Suk-Hyun;Jang, Keum-Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.2
    • /
    • pp.393-397
    • /
    • 2012
  • This study developed a rapid egg-salting method using a temperature change in NaCl solution under pressure. The permeation effects(PEs) of NaCl into eggs at ambient pressure were analyzed 1) after soaking them in 20, 30, or 40%(w/v) NaCl solution at $50^{\circ}C$ and 2) after soaking in 20~40% concentrations(w/v) of NaCl solution at $4^{\circ}C$ immediately after soaking at $50^{\circ}C$ for 1 hr(temperature change method; TCM). Under permeation conditions(40% NaCl solution with TCM), the PE of NaCl into eggs at various pressures(4.0~7.0 MPa) was determined. The PE improved with increasing NaCl concentration and pressure. In 40%(w/v) NaCl solution, the PE was more rapid with TCM(0.70% for 2 hr) than without TCM(0.60% for 2 hr). At 7.0 MPa pressure, the PE was more rapid with TCM(1.66% for 15 min) than without TCM(1.40% for 15 min). These results suggest that the TCM-induced contraction of the egg membrane improved the PE. Therefore, we believe that the development of a rapid salting method for seasoning eggs is possible with the TCM.

Numerical Study on Heat Transfer Performance of Crossflow Fin-tube Heat Exchanger Depending on Different Fan Positions (직교류 핀-튜브형 열교환기에서 팬 위치변화에 따른 열전달 성능변화 연구)

  • Kim, Won Hyung;Park, Tae Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.271-278
    • /
    • 2015
  • The convective heat transfer of a crossflow fin-tube heat exchanger was studied numerically. In order to investigate the dependence of the heat transfer performance on the fan position, several cases with different blowing and suction types were selected for the fan position. A staggered tube arrangement was used for the heat exchanger, and the temperatures of the tube wall and air were $50^{\circ}C$ and $30^{\circ}C$, respectively. The three-dimensional flow structures were examined based on the results. In addition, the convective heat transfer coefficient and mean temperature difference between the inlet and outlet of the heat exchanger were analyzed for the various fan positions, and the heat transfer performance was investigated

Manufacturing Method of Red Ginseng Extract Pills by Centrifugal Coating Granulating System (원심분리 코팅방식을 이용한 홍삼농축액 환의 제조방법)

  • Kwak, Yi-Seong;Choi, Young-Gi;Kwon, Hyun-Jeong;Kim, Na-Mi
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.229-233
    • /
    • 2009
  • The centrifugal coating granulating system, a new method of preparing red ginseng extract pills, has been developed. The red ginseng extract was first powdered with 85.5% of edible ethanol and dried for 3 to 4 hours at 50$^{\circ}C$. The powders were fed in chamber of centrifugal coating granulating system and then granulated, sequentially. The centrifugal system operated at 20 to 50$^{\circ}C$ of inlet temperature, 1 to 1,000 g/min of feeding speed, 60 to 70$^{\circ}C$ of atmosphere temperature of intake, 3.0 to 4.0 bar of spray atmosphere pressure, 1,000 to 1,500 rpm of centrifugal plate speed and 25 to 40$^{\circ}C$ of outlet temperature. The product yield was about 85% and preparation time was 7 to 8 hours. Especially, major ginsenoside components of red ginseng were not decomposed after processing of red ginseng extract pill.

Study of Compressor-Performance Improvement in Automotive Air-Conditioning System (자동차용 에어컨 압축기의 성능 향상에 대한 연구)

  • Kim, Young Shin;Yoo, Seong Yeon;Na, Seung Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.713-718
    • /
    • 2015
  • The purpose of this study is to realize compressor-performance improvements in the fuel economy of an automotive air-conditioning system. We conduct cooling performance tests in a compressor calorimeter test stand. To improve the cooling performance, we investigate the increase in the suction flow rate and the decrease in the discharge dead volume. Based on the results of the test, we found that the cooling capacity and the coefficient of performance (COP) of the compressors were improved as follows. The cooling performance improved greater at high speeds than low speeds in the case of an increase in the suction flow rate increase, and it improved more at low speeds than at high speed when there was a decrease in the discharge dead volume. When both of the above factors were included, we observed that the improvement effects were generally balanced for both high- and low-speed modes, and there was a significant improvement in the discharge temperature. The improvement was found to be about 3.2% at low speed, 8.3% at high speed during in cooling performance improvement, about 5.8% at low speed and about 6.2% at high speed in COP improvement, and there was a decrease of about $3^{\circ}C$ at low speed and a $5^{\circ}C$ decrease at high speed in discharge temperature.

A Thermo-Hydro-Mechanical Coupled Numerical Simulation on the FE Experiment: Step 1 Simulation in Task C of DECOVALEX-2023 (Mont Terri FE 실험 대상 열-수리-역학 복합거동 수치해석: DECOVALEX-2023 Task C 내 Step 1 수치해석 연구)

  • Taehyun, Kim;Chan-Hee, Park;Changsoo, Lee;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.518-529
    • /
    • 2022
  • In Task C of the DECOVALEX-2023 project, nine institutes from six nations are developing their numerical codes to simulate thermo-hydro-mechanical coupled behavior for the FE experiment performed at Mont Terri underground rock laboratory, Switzerland. Currently, Step 1 for comparing the simulation results to field data is the ongoing stage, and we used the OGS-FLAC simulator for a series of numerical simulations. As a result, temperature increase depending on the heating hysteresis was well simulated, and saturation variation in the bentonite depending on phase change was observed. However, due to the suction overestimation, relative humidity and temperature change in the bentonite and the pressure variation in the Opalinus clay showed a difference compared to the field data. From the observation, it is confirmed that the effect of the bentonite capillary pressure is dominant to the flow analysis in the disposal system. We further plan to draw improved results considering tunnel support material and accurate initial water pressure distribution. Additionally, the thermal, hydrological, and mechanical anisotropy of the Opalinus clay was well simulated. From the simulation results, we confirmed the applicability of the OGS-FLAC simulator in the disposal system analysis.

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

Characteristic Analysis of Hybrid Desiccant Cooling System for District Heating in Residential Environment (지역난방에 연계된 하이브리드 제습냉방시스템의 주거환경에서의 성능 분석)

  • Ahn, Joon;Kim, Jaeyool;Kang, Byung Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.571-579
    • /
    • 2014
  • A series of field tests on hybrid desiccant cooling systems were conducted in July-August, 2013. The temperature and humidity of the supply and return air, power, and heat consumption were monitored and transferred in real time through the Internet. The performance parameters of the cooling system, namely, cooling capacity and COP (coefficient of performance), were evaluated from the measured data and their variations under outdoor conditions was analyzed. It was found that with increase in the outdoor temperature, the total energy decreases and cooling capacity increases whereas the latter decreases with increase in the outdoor humidity. The COP was also found to increase with the increase in outdoor temperature.

Estimation for output correction of internal combustion engine (내연기관의 출력수정에 관한 평가)

  • 김문헌
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.22-28
    • /
    • 1986
  • 기관의 성능에 영향을 주는 인자로서는 외적인자(outside factor), 작동인자(operating factor) 및 설계인자(design factor)의 3가지로 나눌 수 있다. 작동인자로서는 기관회전수, 공기연료비, 점화 시기 또는 분사시기 등이면 설계인자로서는 행정체적, 압축비, 흡배기계통의 구조 및 치수, 냉각 방식 등으로 기관에 따라 고유한 값을 가지는 인자이다. 그러나 외적인자인 대기조건 즉 대기 압력, 대기온도 및 대기습도는 계절, 지역 및 기상조건에 따라 달라지므로 이것에 따라 기관이 흡입하는 공기의 압력, 온도 및 습도는 변화하게 된다. 그러므로 대기조건의 변화에 따라서는 기관작동인자인 공기연료비에도 영향을 미치게 할 것이고 또한 연소상태의 변화로 유효압축비 에도 영향을 미치게 할 것이므로 대기상태의 변화는 곧 바로 기관 출력의 변화를 초래하게 될 것이다. 그러므로 같은 운전조건에서의 기관출력도 대기상태의 변화에 따라 변화하게 되므로 임의의 대기 상태에서 측정한 기관출력을 표준대기상태의 기관출력으로 환산해서 평가할 필요가 생긴다. 이것을 일반으로 출력수정(output correction)이라 하고 있으며 각 나라마다 공업규격 또는 기타규격으로 출력정식을 제정하고 있다. 예를 들면 K.S.B 9102, SAE J816B, B.S. 765, DIN 70020, JIS B 8013등이다. 이들 출력수정식들은 많은 문제점을 가지고 있으므로 종래의 출 력수정식으로 출력수정을 하여도 정확하게 맞지 않은 경우가 많다. 출력수정에 관한 문제는 수 10년전부터 많은 연구자에 의하여 연구되고 거론되어 왔으나 과거의 연구자들이 제안하고 거론 되어 왔으나 과거의 연구자들이 제안하고 있는 출력수정식, 또는 규격으로 정하고 있는 출력수 정방법은 어느 것이나 실용상 만족스러운 것이 아직 없다. 그러므로 본 자료는 스파아크 점화 기관의 흡기습도에 관한 출력수정의 문제를 실험적으로 수행한 실험적 출력수정방법에 의한 것과 종래의 출력수정방법에 의한 것과를 비교 검토하였다.

  • PDF

Characteristics and Development Trends of Heat-Resistant Composites for Flight Propulsion System (비행체 추진기관용 내열 복합재의 특성 및 개발 동향)

  • Hwang, Ki-Young;Park, Jong Kyoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.629-641
    • /
    • 2019
  • In order to limit the temperature rise of the structure to a certain level or less while maintaining the aerodynamic shape of solid rocket nozzle by effectively blocking a large amount of heat introduced by the combustion gas of high temperature and high pressure, the heat-resistant materials such as C/C composite having excellent ablation resistance are applied to a position in contact with the combustion gas, and the heat-insulating materials having a low thermal diffusivity are applied to the backside thereof. SiC/SiC composite, which has excellent oxidation resistance, is applied to gas turbine engines and contributes to increase engine performance due to light weight and heat-resistant improvement. Scramjet, flying at hypersonic speed, has been studying the development of C/SiC structures using the endothermic fuel as a coolant because the intake air temperature is very high. In this paper, characteristics, application examples, and development trends of various heat-resistant composites used in solid rocket nozzles, gas turbine engines, and ramjet/scramjet propulsions were discussed.