• Title/Summary/Keyword: 흡음형소음방음벽

Search Result 12, Processing Time 0.014 seconds

Acoustic Performance Evaluation of Noise Barriers Installed Adjacent to Rails and Suggestion of Approximation Formula for the Prediction of Insertion Loss (근접 방음벽의 음향성능평가 및 삽입손실 예측을 위한 근사식의 제안)

  • Yoon, Je Won;Jang, Kang Seok;Cho, Yong Thung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.629-637
    • /
    • 2016
  • In this paper, an investigation was conducted to evaluate the acoustic performance of low height noise barriers installed adjacent to rails; an easy-to-use approximation formula was suggested for the evaluation of insertion loss (IL), instead of using the boundary element method. At first, the acoustic performance of the low height noise barriers was measured in an anechoic chamber using a scaled down model; the overall IL according to the source location was analyzed with the equivalent IL contour line. Using the measurement results obtained from the scaled down model, an approximation formula was suggested for the IL of low height noise barriers having various shapes. Also, the prediction program was validated through a comparison between the actual measurement results in the anechoic chamber and the prediction results. Finally, using the prediction program, an approximation formula for IL was suggested for the low height noise absorption barriers. Considering the frequency characteristics of the noise sources of the train, the absorptive low height noise barriers have a 'ㄱ' type shape, a height of 1.0m, and a length of 0.5m when they are installed on the structure gauge for the train.

A Study on Performance Improvement of Sound Absorbing Noise Barrier (흡음형 방음벽의 성능향상에 관한 연구)

  • 김현실;김재승;강현주;김봉기;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.849-854
    • /
    • 2001
  • A study on performance of the sound absorbing noise barrier is presented. Noise barrier of sound absorbing type is composed of the front panel, sound absorbing material, and back panel. For allowing sound path, front panel is usually perforated. The performance of the noise barrier is governed by the opening ratio of the perforated panel, sound absorption coefficient of the sound absorbing material. In this study, the effects of the opening ratio, diameter of the hole, thickness of the sound absorbing material are investigated. It is found that the thickness of the sound absorbing material must be at least 50 mm to ensure the required minimum NRC value 0.70, and the opening ratio is greater than 0.2. It is shown that the thickness of the back panel is crucial in providing required STL (Sound Transmission Loss) value. The performance of the developed noise barrier is measured, where its sound absorbing coefficient and sound transmission loss satisfy the criteria.

  • PDF