• Title/Summary/Keyword: 흐름의 효율

Search Result 1,772, Processing Time 0.021 seconds

A Study on Antiulcer Effects of Opuntia dillenii Haw. on Stomach Ulcer Induced by Water-immersion Stress in Rats (랫드의 스트레스성 위궤양에 대한 Opuntia dillenii Haw.(선인장)의 항궤양작용에 관한 연구)

  • 이후장;이용욱;김정현
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 1998
  • This study was performed to investigate the antiulcer effects of Opuntia dillenii Haw. on the stomach ulcer induced by restraint and water-immersion stress in rats. For this experiment, 48 male Sprague-Dawley strain were used. The experimental groups were divided into four: a control (C) and 3 Opuntia dillenii Haw. treatment groups (E-1, E-2, E-3). Each dose of Opuntia dillenii Haw. was 30 mg/kg bw (E-1), 60 mgfKg bw (E-2) and 120 mg/kg bw (E-3). The rats were allocated to each group by 12 and observed for 4 weeks. The results were as following: 1. The stomach surface pH in each group showed no significant difference, but the values of Opuntia dillenii Haw. treatment groups were higher than the value of the control group. 2. The gastric wall mucus was increased in all Opuntia dillenii Haw. treatment groups compared with the control group. Especially in E-1 difference was higher (p<0.05) and in E-2 difference was significantly higher (p<0.01). 3. At shear rate 11.25, 45.0, 90.0, $225\;sec^{-1}$, whole blood viscosity and plasma viscosity were measured. Most of the values of Opuntia dillenii Haw. treatment groups were low compared with that of the control group. At shear rate 90.0, $225\;sec^{-1}$ the values of whole blood viscosity in E-1 were significantly low (p<0.05) and at shear rate 11.25, $45.0\;sec^{-1}$, more significant (p<0.01). At shear rate 11.25, 45.0, 90.0, $225\;sec^{-1}$ the values of whole blood viscosity in E-2 were significantly low (p<0.01). At shear rate $90.0\;sec^{-1}$ the value of plasma viscosity in E-1 was significantly low (p<0.05) and at shear rate 90.0, $225\;sec^{-1}$ the values of plasma viscosity in E-2 we resignificantly low (p<0.01). 4. Less severe ulcers were obsered in Opuntia dillenii Haw. treatment groups than in the control group. Especially E-1 groups tissues had only slight ulcers and necrosis of tissue was not observed in this group. From the results of this study, it can be concluded that the oral administratio-n of Opuntia dillenii Haw. results in protection of stomach ulcer by stimulating the secretion of gastric mucus and improving the gastric mucosal microcirculation.

  • PDF

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.