• Title/Summary/Keyword: 흐름방향에 직교배열

Search Result 2, Processing Time 0.018 seconds

Experimental Study of Flow Fields around Cylinder Arrays Using PIV (PIV를 이용한 두 원주 주위의 유동장에 관한 실험적 연구)

  • Jeon, Wan-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.83-88
    • /
    • 1996
  • 두 인접한 원주 유동장을 입자 영상 속도계를 이용하여 연구하였다. 실험은 회류수조에서 행하였다. 흐름방향에 평행하게 배치하는 방법과 직교배열의 두가지 방법으로 원주를 배열하였다. 연구 결과는 다른 연구자의 결과와 일치함을 보여주었다. 본 연구를 통하여 입자 영상 속도계를 이용한 유동장 해석이 대단히 효과적임을 알 수 있었다.

  • PDF

A Study on Optimal Shape of Stent by Finite Element Analysis (유한요소 해석을 이용한 스텐트 최적형상 설계)

  • Lee, Tae-Hyun;Yang, Chulho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.1-6
    • /
    • 2017
  • Stents are widely used as the most common method of treating coronary artery disease with implants in the form of a metal mesh. The blood flow is normalized by inserting a stent into the narrowed or clogged areas of the human body. In this study, the mechanical characteristics of a stent are investigated according to the variations of its design parameters by the Taguchi method and finite element analysis. A stent model of the Palmaz-Schatz type was used for the analysis. In the analysis, an elasto-plastic material model was adopted for the stent and a hyper-elastic model was used for the balloon. The main interest of this study is to investigate the effects of the design parameters which reduce the possibility of restenosis by adjusting the recoil amount. A Taguchi orthogonal array was constructed on the model of the stent. The thickness and length and angle of the slot were selected as the design parameters. The amounts of radial recoil and longitudinal recoil were calculated by finite element analysis. The statistical analysis using the Taguchi method showed that optimizing the shape of the stent could reduce the possibility of restenosis. The optimized shape showed improvements of recoil in the radial and longitudinal directions of ~1% and ~0.1%, respectively, compared to the default model.