• Title/Summary/Keyword: 흉부팬텀

Search Result 70, Processing Time 0.023 seconds

Radiation Dose Reducing Effect during the AEC System in the Chest and Abdomen of the MDCT Scanning (흉부 및 복부에서 AEC 적용에 따른 MDCT의 선량 감소 효과)

  • Lee, Jong-Seok;Kweon, Dae-Cheol;You, Beong-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.3
    • /
    • pp.225-231
    • /
    • 2009
  • The purpose of the current study was to compare radiation dose of 64MDCT performed with automatic exposure control (AEC) with manual selection fixed tube current. We evaluated the CT scans of phantom of the chest and abdomen using the fixed tube current and AEC technique. Objective image noise shown as the standard deviation of CT value in Hounsfield units was measured on the obtained images. Compared with fixed tube current, AEC resulted in reduction of the chest and abdomen in the CTDIvol (35.2%, 5.9%) and DLP (49.3%, 3.2%). Compared with manually selected fixed tube current, AEC resulted in reduced radiation dose at MDCT study of chest and abdomen.

Evaluation of Image Quality in Low Tube-Voltage Chest CT Scan (흉부 CT 검사 시 저 관전압 영상의 화질평가에 관한 연구)

  • Kim, Hyun-Ju;Cho, Jae-Hwan;Park, Cheol-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.4
    • /
    • pp.135-141
    • /
    • 2010
  • Purpose : The patients who visited this department for pulmonary disease and need CT scans for Follow-up to observe change of CT value, evaluation of image quality and decrease of radiation dose as change of kVp. Subjects and Methods : Subjects were the patients of 20 persons visited this department for pulmonary disease and Somatom Sensation 16(Semens, Enlarge, Germany) was used. Measurement of CT value as change of kVp was done by setting up ROI diameter of 1cm at the height of thyroid, aortic arch, right pulmonary artery in arterial phase image using 100 kVp, measuring 3 times, and recorded the average. CT value of phantom was measured by scanning phantoms which means contrast media diluted by normal saline by various ratio with tube voltage of 80 kVp, 100 kVp, 120 kVp, 140 kVp and recorded the average of 3 CT values of center of phantom image. In analysing radiation dose, CTDIVOL values of the latest arterial phase image of 120 kVp and as this research set that of 100 kVp were analyzed comparatively. 2 observers graded quality of chest images by 5 degrees (Unacceptable, Suboptimal, Adequate, Good, Excellent). Results : CT value of chest image increased at 100 kVp by 14.06%~27.26% in each ROI than 120 kVp. CT value of phantom increased as tube voltage lowered at various concentration of contrast media. CTDIVOL decreased at 100 kVp(5.00 mGy) by 36% than 120 kVp(7.80 mGy) in radiation dose analysis. here were 0 Unacceptable, 1 Suboptimal, 3 Adequate, 10 Good, 6 Excellent in totally 20 persons. Conclusion : Chest CT scanning with low kilo-voltage for patients who need CT scan repeatedly can bring images valuable for diagnose, and decrease radiation dose against patients.

Evaluation of Effective Dose with National Diagnostic Reference Level using Monte-Carlo Simulation (몬테카를로 시뮬레이션을 이용한 국내 일반엑스선검사 진단참고수준의 유효선량 평가)

  • Lee, Seung-Youl;Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.1041-1047
    • /
    • 2021
  • In this study, the effective dose for frequently general radiography among the diagnostic reference level (DRL) for examinations provided by the government in Korea was evaluated using the Monte Carlo N-Particle eXtended (MCNPX) simulation tool. We were selected to evaluate for a total of 5 examination sites which included head anterior-posterior, chest (posterior-anterior, lateral), abdomen anterior-posterior and pelvis anterior-posterior. Physical conditions such as tube voltage and tube current used in MCNPX simulation were used in domestic conditions of the Korea Disease Control and Prevention Agency (KDCA). To evaluate domestic medical radiation exposure, we used the HDRK-Man computerized human phantom manufactured based on the international standard ICRP 103 that was applied to the MCNPX simulation. The phantom could represent the standard body shape of Koreans. As a results, the effective dose corresponding to the DRL based on adult males of head anterior-posterior position was 0.086 mSv, chest posterior-anterior position was 0.05 mSv, chest lateral was 0.354 mSv, abdomen anterior-posterior position was 0.548 mSv, and pelvis anterior-posterior position was 0.451 mSv.

Evaluation of the usefulness of Images according to Reconstruction Techniques in Pediatric Chest CT (소아 흉부 CT 검사에서 재구성 기법에 따른 영상의 유용성 평가)

  • Gu Kim;Jong Hyeok Kwak;Seung-Jae Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.285-295
    • /
    • 2023
  • With the development of technology, efforts to reduce the exposure dose received by patients in CT scans are continuing with the development of new reconstruction techniques. Recently, deep learning reconstruction techniques have been developed to overcome the limitations of repetitive reconstruction techniques. This study aims to evaluate the usefulness of images according to reconstruction techniques in pediatric chest CT images. Patient study conducted a study on 85 pediatric patients who underwent chest CT scan at P-Hospital in Gyeongsangnam-do from January 1, 2021 to December 31, 2022. The phantom used in the Phantom Study is the Pediatrics Whole Body Phantom PBU-70. After the test, the images were reconstructed with FBP, ASIR-V (50%) and DLIR (TF-Medium, High), and the images were evaluated by obtaining SNR and CNR values by setting ROI of the same size. As a result, TF-H of deep learning reconstruction techniques had the lowest noise value compared to ASIR-V (50%) and TF-M in all experiments, and SNR and CNR had the highest values. In pediatric chest CT scans, TF images with deep learning reconstruction techniques were less noisy than ASiR-V images with adaptive statistical iterative reconstruction techniques, CNR and SNR were higher, and the quality of images was improved compared to conventional reconstruction techniques.

Development of a New Cardiac and Torso Phantom for Verifying the Accuracy of Myocardial Perfusion SPECT (심근관류 SPECT 검사의 정확도 검증을 위한 새로운 심장.흉부 팬텀의 개발)

  • Yamamoto, Tomoaki;Kim, Jung-Min;Lee, Ki-Sung;Takayama, Teruhiko;Kitahara, Tadashi
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.389-399
    • /
    • 2008
  • Corrections of attenuation, scatter and resolution are important in order to improve the accuracy of single photon emission computed tomography (SPECT) image reconstruction. Especially, the heart movement by respiration and beating cause the errors in the corrections. Myocardial phantom is used to verify the correction methods, but there are many different parts in the current phantoms in actual human body. Therefore the results using a phantom are often considered apart from the clinical data. We developed a new phantom that implements the human body structure around the thorax more faithfully. The new phantom has the small mediastinum which can simulate the structure in which the lung adjoins anterior, lateral and apex of myocardium. The container was made of acrylic and water-equivalent material was used for mediastinum. In addition, solidified polyurethane foam in epoxy resin was used for lung. Five different sizes of myocardium were developed for the quantitative gated SPECT (QGS). The septa of all different cardiac phantoms were designed so that they can be located at the same position. The proposed phantom was attached with liver and gallbladder, the adjustment was respectively possible for the height of them. The volumes of five cardiac ventricles were 150.0, 137.3, 83.1, 42.7 and 38.6ml respectively. The SPECT were performed for the new phantom, and the differences between the images were examined after the correction methods were applied. The three-dimensional tomography of myocardium was well reconstructed, and the subjective evaluations were done to show the difference among the various corrections. We developed the new cardiac and torso phantom, and the difference of various corrections was shown on SPECT images and QGS results.

  • PDF

Dose Calculation of Heterogeneous Lung Tissue on 6MV X-ray Therapy (6MV X-선에 의한 폐조직의 심부선량변화와 임상응용)

  • 이경자;장승희;추성실
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.247-257
    • /
    • 1998
  • For effective radiotherapy, it should always be considered that calculation of different dose distribution in heterogenous tissue is important particularly on lung which has low density and large volume. To take precise dose distribution of 6MV X-ray in the thoracic cage, the authors had made a tissue equivalent phantom for thorax, measured dose distribution by thermoluminescent dosimeter and mm dosimeter, and derived methmetical equation coincided with provided theoretical formula. In comparision with isodose curve on case of homogeneous soft tissue, dose of heterogeneous lung tissue had been shown increase about 4% per cm depth on one and multiportal field, less than 15% difference on rotation field for esophagus, and around 20% difference on rotation field for lung according to the degree of rotation angle that must be corrected by dose compensation.

  • PDF

The Study of Effectiveness in a Modified Rib Oblique Projection View Using a Chest Phantom (흉부팬텀을 이용한 변형된 늑골 사방향 검사의 유용성에 관한 연구)

  • Um, Ki-Tae;Lee, Min-Su;Kang, Sung-Jin
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.525-532
    • /
    • 2018
  • This study is filmed by applying the axial angle variation of the X-ray tube instead of the patient's position change during the perimetric examination of the ribs. A Reference image with the rib oblique examination using a chest phantom and experimental images applied with a six-phase variation in the axial angle by increasing $5^{\circ}$ tube angle each from $5^{\circ}{\sim}30^{\circ}$ from the vertical incident direction of the chest phantom to the right horizontal axis were obtained. For the quantitative comparative evaluation of the images, SNR and CNR were calculated for regions of interest in the experimental images based on the reference image. Also, the left-right rib ratio in the reference image and the left-right rib ratio in the experimental images are measured and compared. As a result of the study, the experimental images with a tube angle of $25^{\circ}$ were best shown in the measurements of the SNR, CNR and left-right rib ratio compared to the reference image with a standard examination method. The modified rib examinations will consider useful, if it is difficult to maintain the patient's examination position.

The Study of Optimal Acquisition Condition and Image Processing (최적의 촬영조건 및 영상처리에 관한 연구)

  • Lee, Yong-Gu;Shin, Jong-Ho;Seo, Kyoung-Eun;Choi, Yoo-Lee;Lee, Soo-Hyeon;Lee, Young-Jin;Kim, Hee-Joung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.221-226
    • /
    • 2014
  • In this paper, we achieved the study which determined the excellent diagnostic condition and searched the exposure condition with the minimum radiation exposure level having the equal diagnostic ability. To accomplish these study, chest phantom images with lesions and without ones were evaluated at various exposure conditions. With respect to the phantom with lesions and without ones, we obtained the chest PA imaging applied by photographing parts of DR apparatus and the images processed as histogram equalization and edge enhancement method. The images were acquired at the exposure conditions of 2.0, 2.5, 3.2, 4.0 and 5.0mAs. The morphological analysis was performed by ROC curves using the images obtained at each exposure condition. The exposure conditions with the most excellent diagnostic ability and with the equal diagnostic capability having the minimum radiation exposure level were determined by means of sensitivity, specificity and accuracy.

Clinical Apply of Dual Energy CT (kVp switching) : A Novel Approach for MAR(Metal Artifact Reduction) Method (듀얼에너지 CT(kvp switching)의 임상 적용: MAR(Metal Artifact Reduction) 알고리즘의 적용)

  • Kim, Myeong-Seong;Jeong, Jong-Seong;Kim, Myeong-Goo
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.79-85
    • /
    • 2011
  • OThe purpose of this article was to measure and compare the value of the metal artifact reduction (MAR) algorithm by Dual energy(kVp switching) CT (Computed Tomography) for non using MAR and we introduced new variable Dual energy CT applications through a clinical scan. The used equipment was GE Discovery 750HD with Dual-Energy system(kVp switching). CT scan was performed on the neck and abdomen area subject for patients. Studies were from Dec 20 2010 to Feb 10 2011 and included 25 subject patients with prosthesis. We were measured the HU (Hounsfield Unit) and noise value at metal artifact appear(focal loss of signal and white streak artifact area) according to the using MAR algorithm. Statistical analyses were performed using the paired sample t-test. In patient subject case, the statistical difference of showing HU was p=0.01 and p=0.04 respectively. At maximum black hole artifact area and white streak artifact area according to the using MAR algorithm. However noise was p=0.05 and p=0.04 respectively; and not the affected black hole and white streak artifact area. Dual Energy CT with the MAR algorithm technique is useful reduce metal artifacts and could improve the diagnostic value in the diagnostic image evaluation of metallic implants area.

A Convergence Study on the Reduction of Noise and Streak Artifacts in Shoulder Joint Computed Tomography (어깨관절 컴퓨터 단층 검사 시 발생하는 노이즈 및 줄무늬 인공물 감소에 대한 융합 연구)

  • Jang, Hyon-Chol;Cho, Pyong-Kon
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.189-194
    • /
    • 2021
  • The purpose of this study was to investigate the effect of reducing noise and streaking artefacts by applying the Boost3D algorithm in the case of noise and streaking artifacts generated during computed tomography of the shoulder joint. A phantom study using a thoracic phantom including shoulder joint and clinical evaluation were conducted through shoulder joint images of 35 patients who underwent computed tomography of the shoulder joint from September 2020 to October 2020. The evaluation was divided into groups before and after the application of the Boost3D algorithm, and the noise values, signal to noise ratio, and mean to standard deviation ratio values were analyzed. Both noise values and mean to standard deviation ratio values analyzed in phantom image evaluation and clinical image evaluation were statistically significantly lower in the group after Boost3D was applied (p<0.05). Through this study, it was found that noise and streak artifacts were reduced through the application of Boost3D, and the mean to standard deviation ratio was high, which can be judged as an excellent image. If the Boost3D algorithm is used for computed tomography of the shoulder joint, it is thought that excellent images can be obtained with reduced noise and streaking artifacts that may occur in the shoulder joint area.