친환경 에너지원 개발에 관한 관심이 증가하면서, 해상풍력발전기 시장은 매년 높은 증가율을 보이면서 성장하고 있다. 이와 맞물려 대용량 해상풍력발전기를 설치할 수 있는 설치선의 수요 또한 급증하고 있다. 풍력발전기 설치 선박(Wind Turbine Installation Vessel)은 설치 및 해체를 위하여 레그(Leg)와 스퍼드캔(Spudcan)을 해저면에 관입시켜서 고정하며, 이때 스퍼드캔 구조 강도 안전성에 대한 검토는 전체 시스템과 연관된 중요한 문제이다. 본 연구에서는 현재 선급에서 제시하고 있는 절차서를 분석하고, 실제 발생할 수 있는 하중 시나리오를 반영한 새로운 절차서를 제안하였으며, 유한요소해석을 통한 검증을 하였다. 기존 방식은 해저면의 기울기와 레그에 발생하는 휨모멘트 그리고 형상에 따른 영향을 검토하지 않기 때문에, 허용응력보다 작은 최대 응력 값을 보이지만, 신규 절차에 따른 결과는 대부분 구조보강이 발생하였다. 이러한 현상은 해상풍력발전기의 크기가 커지면 커질수록 차이가 크게 나타나며, 실제 관입(Pre-load) 조건을 고려하면 상당수의 부재에서 구조적 문제가 발생할 가능성이 있다. 따라서 본 연구에서는 더욱 실제적인 작업조건을 고려한 절차서를 제안하였고, 적용 시 문제점들에 대해서 구조해석을 통한 검증을 수행하였다.
본 연구의 목표는 수직분할된 철근콘크리트 전단벽의 철근상세에 따른 강성 및 강도 저감에 대해 실험적으로 평가하는 것이다. 본 연구에서는 수직분할에 따른 강도 및 강성 저감효과를 확인하기 위해 실 스케일 실험체 4개를 제작하여 반복 횡가력 실험을 수행하였다. 실험결과, 수직분할에 따라 강도 및 강성이 감소되는 것을 확인하였다. 특히 강도 저하율보다 강성 저하율이 큼에 따라 수직분할에 따른 하중 재분배 시 극한강도에 대한 안전성을 확보할 수 있을 것으로 기대된다. 균열양상을 확인한 결과, 분할된 벽체 중 압축지배를 받는 벽체에서 사인장 균열이 발생하였기 때문에 강도 평가 시 휨 강도 뿐만 아니라 전단저항 메커니즘을 같이 고려해야 한다. 벽체 단면 수직철근의 변형률 분포 분석 결과, 분할 후 두 개의 중립축이 발생하며 상부에서는 반전된 변형률 분포가 나타나 이중 곡률을 갖는 벽체의 양상을 보였다. 추후 연구에서는 벽체의 유효높이를 고려한 강성 저감률 평가가 필요하며 추가로 벽체 형상비 등 추가 변수에 대한 평가 및 유한요소해석을 이용한 다양한 벽체에 대한 해석적 연구가 필요하다.
최근, 구조설계 기준 및 평가방법의 전문화로 인하여, 선급 규칙의 통합화가 이뤄졌었다. 그 좋은 일례가 국제공통규칙(CSR, Common Structural Rule)이다. 그러나, 종강도 하중이 크게 작용하는 화물창 구역에만 국한하여 세부규정이 제시되어 있고, 선수와 선미부 구조에는 별다른 평가 지침이 없다. 언급한 구역의 구조설계는 조선사의 설계 경험에 의존하여 진행하고 있으며, 선급에서도 명확한 기준이 없으므로 구조 손상 문제가 발생하더라도 근본적인 원인을 파악하기가 힘들다. 본 연구에서는 선미부에 주로 발생하고 있는 좌굴 손상의 대표적인 사례에 대한 근본적인 원인을 파악하기 위한 엔지니어링 기반의 해법을 제시하였다. 유한요소해석 모델링 기반 구조 강도 검증을 위하여, 하중 조건, 경계조건, 모델링 방법 그리고 평가 기준에 대한 합리적인 해법을 제시하였다. 선미부에 작용하는 휨 모멘트에 의하여 높이 방향으로 압축하중에 의해서 좌굴이 발생할 가능성이 있으며, 좌굴 강성 증가를 위하여 판 두께 증가 혹은 수직 보강재의 추가가 필요하다. 앞으로도 이 결과는 유사 운반선의 선미부 구조 강도 검토 시 도움을 줄 것으로 기대된다.
지중강판 구조물은 강판부재 내에 발생하는 휨모멘트에는 매우 취약하기 때문에 그 주변을 양질의 흙으로 뒷채움하여 주변 흙과의 상호작용에 의하여 상부에 작용하는 하중을 지지한다. 그러나, 구조물 측면을 뒷채움할 때나 최소토피고를 확보하지 못한 상태에서 활하중이 작용할 때에는 강판부재내에 과도한 모멘트가 발생할 수 있다. 현재 설계기준에서는 허용변형량을 제시하여 시공 중에 과도한 변형이 발생하는 것을 방지하고 있으며 Duncan(1979)과 McGrath 등(2001)은 강도해석법을 제안하여 시공 중에 발생하는 모멘트를 강판의 소성강도 이내로 제한하고 있지만, 허용변형량은 경험적으로 규정한 값이고 강도해석에 의한 구조 안정성 검토는 유한요소 해석결과를 바탕으로 제안되었기 때문에 이들에 대하여 실험적 검증이 필요하다. 이 연구에서는 높은 아치형 구조물에 대한 실규모 현장시험을 실시하여 시공 중 거동과 활하중에 대한 하중지지 거동을 분석하였다. 시험결과를 바탕으로 시험시공 구조물의 허용변형량을 '높이의 1.45%' 로 추정할 수 있었는데 이는 설계기준의 허용값인 '높이의 2%' 보다 작은 값이었다. 또한, 계측결과를 Duncan과 McGrath 등이 제안한 강도해석결과와 비교하여 Duncan은 성토하중에 의한 모멘트는 과소평가하고 활하중 모멘트는 과대평가 하지만 McGrath 등은 두 값을 모두 실제와 근접하게 예측함을 알 수 있었다. 그러나, 두 방법에 의한 소성힌지에 대한 안전율은 실제 안전율과 잘 일치하여 두 방법 모두 시공 중에 작용하는 활하중에 대한 구조 안정성을 적절히 평가할 수 있음을 확인하였다.나 길항력(6.4 ㎜)은 남아있었다. 또한 분자량 10kDa 이하의 분획에서는 chitinase 활성은 없으나 길항력(5.2㎜)은 나타내었고, 80℃에서 열처리하여도 길항력(5.0mm)이 남아있어 효소 이외 다른 생리활성물질이 존재함을 확인하였다.rin, (+)-taxifolin 3-O--$\beta$-D-glucopyranoside, (+)-catechin 및 benzoic acid의 함량은 건조 및 처리 온도가 증가할 수록 감소하는 양상을 나타내었다.tier taste and the Doenjang with P. japonica Powder had the least sweet taste. In the flavor and overall Preference, the Doenjang with P. japonica powder was the lowestEX>로 측정되었고, 계사내 지붕의 표면 온도는 최고 $29^{\circ}C$가 측정되었다. 계사 내 표면 온도 및 닭의 표면 온도는 계사내 공기온도의 영향을 많이 받는 것으로 나타났다.ill in a good agreement with those predicted by Rohsenow's formula, which was based on nucleate boiling. For the condenser, the wall temperatures were practically uniform, and the measured values of condensation heat transfer coefficient were 1.7 times
기존 철근콘크리트 구조물에 대한 보강 방법으로서 강판접착공법은 강판의 박리나 rip-off 등 조기 파괴의 문제점을 안고 있음에도 불구하고 가장 널리 이용되고 있다. 그러나, 아직까지도 이러한 조기 파괴 문제점은 강판 단부의 접착계면 주위의 국부적인 파괴메커니즘 관점에서 파악되지 않고 있다. 그러므로, 이 연구에서는 보강판의 파괴 메카니즘을 구명하고 접착계면에서의 박리기준을 제시하는 것을 목적으로 하고 있다. 이러한 목적으로 두 가지 방법에 의한 광범위한 실험이 수행되었는데, 그 하나가 순수 전단력이 작용하는 상태를 고려한 double lap pull-out test이고, 또 다른 하나는 휨과 전단이 동시에 작용하는 상태를 고려한 half beam test이다. 주요 실험변수로 강판의 두께, 접착제의 두께, 부착길이, 그리고 단부 처리방법 등을 채택하였으며, 이를 토대로 하여 각 변수에 의한 영향을 다각도에서 분석하였다. 강판의 길이방향으로의 변형률을 측정하여 그로부터 접착계면에서의 전단응력을 계산하였으며, 콘크리트와 강판의 상대 변위를 측정하여, 접착계면의 전단계수를 얻고자 하였다. 이러한 실험 결과를 이용하여 비선형 유한요소 해석결과와 비교를 통하여 실험의 검증 및 강판의 단부 접착계면에 발생하는 전단응력 및 법선응력을 도출하였다. 해석결과 최대 하중뿐만 아니라 균열패턴 등도 실험결과와 잘 부합되는 것으로 나타났다. 최종적으로, 해석으로부터 얻은 최대 전단응력과 법선응력의 관계를 이용하여 접착계면의 박리가 발생하는 기준치를 제시하였다. 이러한 연구 결과는 강판 보강된 콘크리트 휨부재에 대하여 보다 현 실적인 설계 및 해석을 가능케 할 것으로 사료된다.mitted) = 369.4$_{A}$V sub p/ - l237.8 <기중양생>lpha$), head separation factor($\beta$), tail separation factor((equation omitted))값이 증가하였다.C$였다.$였다.X>였다..X>였다.할 것으로 생각되었으며, 향후 더 많은 환자들을 대상으로 장기간에 걸친 임상적인 연구가 필요할 것으로 생각되었다.ang with P. japonica Powder had the least sweet taste. In the flavor and overall Preference, the Doenjang with P. japonica powder was the lowestEX>로 측정되었고, 계사내 지붕의 표면 온도는 최고 $29^{\circ}C$가 측정되었다. 계사 내 표면 온도 및 닭의 표면 온도는 계사내 공기온도의 영향을 많이 받는 것으로 나타났다.ill in a good agreement with those predicted by Rohsenow's formula, which was based on nucleate boiling. For the condenser, the wall temperatures were practically uniform, and the measured values of condensation heat transfer coefficient were 1.7 times higher than the predicted values obtained from Nusselt's film
최근 건설기술의 발전에 따라 구조물이 대형화, 고층화, 장대화되고 있으며, 동시에 다양한 기능을 수행하고 있다. 그러나 요즘 들어 그 빈도수가 증가하고 있는 충돌 사고나 테러에 의한 폭발, 화재 등에 의한 극한하중이 상기의 구조물에 작용할 경우, 구조물의 손상뿐만 아니라 인명과 재산의 피해 정도가 상당히 커질 수 있다. 특히, 충격이나 폭발하중은 구조물에 작용하는 압력 또는 하중이 매우 짧은 시간에 발생하게 되고, 이러한 하중을 받는 구조물은 준-정적(quasi-static) 하중을 받는 구조물과는 다른 응답을 나타내게 되며 반드시 변형률 속도와 손상 효과를 고려해서 설계가 이루어져야 한다. 그러므로 이 연구에서는 콘크리트 슬래브의 충격저항성능 향상을 위해서 강섬유를 전체 부피의 0%에서 1.5%까지 혼입하고, 두 가지 종류의 FRP 시트를 인장부에 보강하여 저속 충격하중에서의 휨 실험을 수행하였다. 실험 결과 FRP 시트를 인장부에 보강할 경우에 최대 충격하중 및 소산에너지, 파괴 시의 타격 횟수가 증가하였으며, 최대 처짐 및 회전각은 감소하여 충격저항성능이 크게 향상되는 것으로 나타났다. 이러한 결과는 추후 극한하중에 노출될 수 있는 주요 시설물의 설계 시 유용하게 사용될 수 있을 것으로 판단된다. 또한, 이 논문에서는 두 가지 종류의 FRP 시트로 보강된 강섬유 보강 콘크리트 슬래브의 저속 충격하중에서의 동적응답을 해석하기 위하여 외연적 시간적분에 기초한 유한요소해석 프로그램인 LS-DYNA를 사용하였으며, 해석 결과 오차율 5% 이내로 비교적 정확하게 최대 처짐을 예측하는 것으로 나타났다.
국내뿐만 아니라 세계적인 추세로 증가하고 있는 열차의 고속화와 대량 운송능력의 요구에 따라 열차 궤도구조의 개발은 지속적으로 발전하고 있다. 콘크리트 구조궤도인 PST는 안전성과 경제성에서 그 요구조건을 충족할 수 있는 시스템으로 개발되고 있다. 따라서 본 연구에서는 PST시스템의 각 구조부재의 거동을 분석함으로써 향후 시스템 개발 및 설계에 필요한 정보를 제공하고자 하였다. KRL-2012 열차하중과 KRC 코드에 의한 다양한 정적하중조합에 따른 응력분포 결과를 3차원 유한요소 해석을 통하여 분석하였으며, 그라우트충전층의 두께에 따른 결과 또한 제공하고자 하였다. 구조부재별로는 그라우트충전층에서 가장 큰 응력이 발생하였으며 하중조합과 두께에 따라 응력의 변화가 민감하였다. 시동하중 및 온도하중에 의해서는 KRL-2012에 의한 수직하중만 적용할 때와 비교하여 콘크리트 패널과 HSB에서 각각 3.3배, 14.1배의 발생응력이 증가하는 것으로 나타났다. 충전층의 두께가 20mm에서 80mm로 증가할 때 콘크리트 패널의 발생 응력은 4% 감소하지만, 충전층은 24% 증가하는 것으로 나타났다. 균열의 양상은 그라우트충전층에서 인장균열이 국부적으로 발생하는 것으로 나타났다. 이와같은 결과에 따라 PST시스템 개발 시에는 수직하중 보다는 수평하중에 의한 휨 및 인장거동에 세심한 주의가 필요하며, 충전층의 두께를 40mm 이상 유지함으로써 각 구조부재의 안전성을 확보할 수 있도록 한다.
본 연구에서는 해양플랫폼의 탑사이드 구조에서 주로 채택하고 있는 파이프 연결 구조의 피로 수명 증가를 위한 방안을 찾기 위하여, 유한요소해석을 수행하였다. 상용해석프로그램인 MSC Patran/Nastran을 적용하였으며, 대표적인 중앙부 구조 형상을 해석모델로 선정하였다. 하중에 따른 응력집중 현상을 구현하기 위하여, 8 절점 솔리드 요소를 이용한 모델링을 구현하였다. 주요하중은 횡방향 하중 2가지와 대각선 파이프에 인장 하중을 고려하였다. 주요 위치에서의 Hot spot 응력을 확인하기 위하여, 0.01 mm dummy 쉘 요소를 적용하였으며, 0.5 t와 1.5 t 위치에서의 주응력을 계산한 후 외삽법에 따라 용접부에 발생하는 응력을 추정하였다. 일부 구간에서는 만족해야 하는 피로 수명 이하로 평가되어, 보강이 필요하였다. 보강은 기존 설계된 파이프의 두께나 지름을 변경하지 않고, 피로수명이 부족한 부위에 응력집중계수를 낮출 수 있도록 브래킷을 추가하였다. 인장 하중에 대해서는 bracket toe에서 응력은 23 % 증가하였고, 기존에 문제가 된 파이프의 내측, 외측에서의 응력은 약 8 % 감소하였다. 휨 하중에 대해서는 bracket toe에서 응력은 3 % 증가하였고, 기존에 문제가 된 파이프의 내측, 외측에서의 응력은 약 48 % 감소하였다. 신규 브래킷 보강으로 인하여, bracket toe의 응력증가가 발생하였지만, S-N 커브 자체가 파이프 조인트에 비해 좋으므로 큰 문제가 되지는 않는다. 본 연구에서 적용한 국부 보강을 통한 피로 수명 개선 방법은 기존 설계안의 변경을 최소화하면서 피로 수명 증가를 효율적으로 할 수 있다는 점에서 관련 산업에서 유용하게 활용될 수 있을 것으로 기대된다.
도심지 내에서 교통량 증가로 인하여 차선확대가 요구되는 경우, 기존 터널은 증가된 차선만큼 단면을 확대할 필요가 있다. 터널 단면확대 공사로 발생되는 터널주변의 교통정체를 해소하기 위하여 터널 내에 직사각형 단면의 프로텍터를 설치하여 프로텍터 내부로 교통흐름을 유지하기도 한다. 프로텍터를 사용하면 터널 측벽 하부에서 프로텍터와 굴착 면 사이의 공간이 협소하여 록볼트 시공이 불가능할 수도 있다. 본 연구에서는 터널 측벽 하부의 협소한 공간에서 록볼트를 시공하지 않고 숏크리트 두께를 증가시켜 터널의 안정성을 확보하는 방법을 제안하였다. 기존 2차선 재래식 터널을 3차선 및 4차선 NATM터널로 확대 시공할 경우에 대하여 수치해석을 수행하였다. 터널 측벽 하부에 록볼트를 시공한 경우, 록볼트를 시공하지 않은 경우 및 록볼트를 시공하지 않고 숏크리트 두께만 증가시킨 경우에 대하여 터널의 천단변위, 내공변위 및 숏크리트에 발생한 응력을 비교분석하였다. 천단변위 및 상반 내공변위는 차이가 거의 없었으며, 하반 내공변위는 터널 측벽 하부에 록볼트를 시공하지 않은 경우가 록볼트를 시공한 경우보다 최대 1.3mm 크게 발생하였다. 또한 숏크리트에 발생한 휨압축응력은 터널 측벽 하부에 록볼트를 시공하지 않은 경우가 록볼트를 시공한 경우보다 최대 1.3MPa 크게 발생하였다. 록볼트 미시공에 의해 추가 발생된 숏트리트 응력을 감소시키기 위하여 기존 숏트리크 두께의 20%(250mm ${\rightarrow}$ 300mm, 4차선 터널)및 25%(200mm ${\rightarrow}$ 250mm, 3차선 터널)를 추가 시공하면 록볼트를 시공할 경우와 비슷한 응력수준을 나타내는 것으로 분석되었다.
H-pile과 목재 토류판을 사용하는 흙막이 공법은 오랜 기간 굴착공사에서 사용되어 온 공법이지만 H-pile 사이의 간격이 일정치 않아 규격화된 목재를 절단하거나 덧대기 공정이 추가되는 문제점이 있다. 또한, 시방규정상 3회 재사용을 위한 목재 회수시 안전사고의 위험이 따르게 되며 이러한 이유로 목재를 회수치 않고 지중에 매몰하여 여러 차례 방송매체의 지적을 받은 바 있다. 이 연구에서는 이상의 문제점을 보완하기 위하여 기존의 목재 토류판을 대신하여 강재 요소를 적용하는 방안을 제시하였다. 강재 흙막이 구조체는 자유 확폭과 개별 흙막이 구조체를 연결하는 커넥터를 통해 시공 편의성 및 재활용을 위한 회수가 가능한 것이 특징이다. 또한, 해체 시 커넥터를 통한 구조체간의 연결성으로 지중인력투입없이 해체가 가능하다. 이러한 흙막이 구조체의 강도특성을 분석하기 위해 UTM장비를 사용하여 휨 강성시험, 반복 사용의 능력을 확인하기위한 피로 강도시험, 그리고, 흙막이 구조체의 회수 시 연결부 구조체의 성능을 확인하기위한 인장 강도시험을 수행하였다. 또한, 장점으로 부각된 내용이 현장에서 실제 가능한지 여부를 확인하기 위한 현장시험과 다양한 지반조건에 따른 수치해석을 통해 현장 적용성을 평가하였다. 연구결과, 구조적 특성뿐만 아니라 설치 및 해체시의 시공 편의성이 매우 탁월한 것으로 나타났으며 향후 구조체의 재사용과 함께 시공 경제성 증진에도 크게 기여할 것으로 판단된다. 특히, 다단굴착시 굴착배면에 흙막이 구조체가 밀착되어 설치가 가능한 점은 기존 공법에서 지적되어 온 배면지반의 뒷채움 불량이 발생할 여지가 없어 시공 및 시공 후 시설물의 안전성 증진에 크게 기여할 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.